[NeetCode 150] Find Median in a Data Stream

Find Median in a Data Stream

The median is the middle value in a sorted list of integers. For lists of even length, there is no middle value, so the median is the mean of the two middle values.

For example:

For arr = [1,2,3], the median is 2.
For arr = [1,2], the median is (1 + 2) / 2 = 1.5
Implement the MedianFinder class:

MedianFinder() initializes the MedianFinder object.
void addNum(int num) adds the integer num from the data stream to the data structure.
double findMedian() returns the median of all elements so far.

Example 1:

Input:
["MedianFinder", "addNum", "1", "findMedian", "addNum", "3" "findMedian", "addNum", "2", "findMedian"]

Output:
[null, null, 1.0, null, 2.0, null, 2.0]

Explanation:
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.findMedian(); // return 1.0
medianFinder.addNum(3); // arr = [1, 3]
medianFinder.findMedian(); // return 2.0
medianFinder.addNum(2); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

Constraints:

-100,000 <= num <= 100,000

findMedian will only be called after adding at least one integer to the data structure.

Solution

We can divide this ordered list into 2 parts. Maintain the first half via a max-heap and maintain the second half via a min-heap. If we keep the balance between the size of these two heaps, we can guarantee that the median is always at the top of them.

To do this, we need to adjust the size of heaps after each addNum. As we only add 1 number once, we only need to move at most 1 element from one heap to another.

Code

heapq is a good way to realize heap (or say priority queue).

class MedianFinder:

    def __init__(self):
        self.first = [(100001, -100001)]
        self.second = [(100001, 100001)]
        

    def addNum(self, num: int) -> None:
        first_max = self.first[0][1]
        second_min = self.second[0][1]
        if num <= first_max:
            heapq.heappush(self.first, (-num, num))
        else:
            heapq.heappush(self.second, (num, num))
        if len(self.first) > len(self.second) + 1:
            temp = heapq.heappop(self.first)
            heapq.heappush(self.second, (-temp[0], temp[1]))
        if len(self.second) > len(self.first):
            temp = heapq.heappop(self.second)
            heapq.heappush(self.first, (-temp[0], temp[1]))
        

    def findMedian(self) -> float:
        if len(self.first) == len(self.second):
            return (self.first[0][1]+self.second[0][1])/2
        else:
            return self.first[0][1]
        
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值