Combination Sum(和的组合形式)
【难度:Medium】
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
给定一个正整数数组C和目标值T,在C中找到所有不重复的数字组合(组合不完全相同,同一数字可能在一个组合中多次),使组合的和都是T,以非降序的形式。如C = [2,3,6,7], T = 7,解集为[7]和[2,2,3]。
解题思路
此题可以使用回溯法来解决:假设当前的数是某个组合中的一个,从这一个状态出发,搜索从这一个状态可能到达的所有状态,直到进入“死胡同”或得到一个解。再后退一步或若干步,直到所有可能都已试探过。
c++代码如下:
解法一:
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> ans;
vector<int> tmp;
if (candidates.empty())
return ans;
//求解之前先对数组升序排序
quicksort(candidates,0,candidates.size()-1);
if (target < candidates[0])
return ans;
//从第一个数开始递归回溯
backtracking(ans,candidates,tmp,target,0);
return ans;
}
void quicksort(vector<int>& n, int low, int high) {
if (low >= high)
return;
int i = low;
int j = high;
int k = n[low];
while (i < j) {
while (i < j && n[j] >= k)
j--;
n[i] = n[j];
while (i < j && n[i] <= k)
i++;
n[j] = n[i];
}
n[i] = k;
quicksort(n,low,i-1);
quicksort(n,i+1,high);
}
//tmp保留中间状态,ans保留最终结果,t是要组成的和,index是目前访问数组的下标
void backtracking(vector<vector<int>>& ans, vector<int> n, vector<int>& tmp, int t, int index) {
//边界条件,t等于0时意味着求到一个解
if (t == 0) {
if (tmp.empty())
return;
ans.push_back(tmp);
return;
}
//t小于0则不满足一个解
if (t < 0) {
return;
}
//搜索到尽头同样不是解
if (index == n.size())
return;
//组合中包含当前的数字
tmp.push_back(n[index]);
//进行新的递归
backtracking(ans,n,tmp,t-n[index],index);
//回退
tmp.pop_back();
//试探下一个数
backtracking(ans,n,tmp,t,index+1);
return;
}
};
解法二:
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> ans;
vector<int> tmp;
if (candidates.empty())
return ans;
quicksort(candidates,0,candidates.size()-1);
if (target < candidates[0])
return ans;
backtracking(ans,candidates,tmp,target,0);
return ans;
}
void quicksort(vector<int>& n, int low, int high) {
if (low >= high)
return;
int i = low;
int j = high;
int k = n[low];
while (i < j) {
while (i < j && n[j] >= k)
j--;
n[i] = n[j];
while (i < j && n[i] <= k)
i++;
n[j] = n[i];
}
n[i] = k;
quicksort(n,low,i-1);
quicksort(n,i+1,high);
}
void backtracking(vector<vector<int>>& ans, vector<int> n, vector<int>& tmp, int t, int index) {
if (t == 0) {
ans.push_back(tmp);
return;
}
//与解法一的区别在于将一的尾部递归换成了while循环来表达,这种方式的耗时更低,因为递归的效率没有循环好
while (index < n.size()) {
if (t < n[index])
break;
if (t == n[index] || t >= 2*n[index]) {
tmp.push_back(n[index]);
backtracking(ans,n,tmp,t-n[index],index);
tmp.pop_back();
}
index++;
}
return;
}
};