复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。
开始之前,导入numpy、pandas包和数据
# 导入基本库
import pandas as pd
import numpy as np
# 载入data文件中的:train-left-up.csv
train_left_up=pd.read_csv(r"./data/train-left-up.csv",encoding="utf_8_sig")
train_left_up
PassengerId | Survived | Pclass | Name | |
---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) |
4 | 5 | 0 | 3 | Allen, Mr. William Henry |
... | ... | ... | ... | ... |
434 | 435 | 0 | 1 | Silvey, Mr. William Baird |
435 | 436 | 1 | 1 | Carter, Miss. Lucile Polk |
436 | 437 | 0 | 3 | Ford, Miss. Doolina Margaret "Daisy" |
437 | 438 | 1 | 2 | Richards, Mrs. Sidney (Emily Hocking) |
438 | 439 | 0 | 1 | Fortune, Mr. Mark |
439 rows × 4 columns
2 第二章:数据重构
2.4 数据的合并
2.4.1 任务一:将data文件夹里面的所有数据都载入,观察数据的之间的关系
#写入代码
train_left_down=pd.read_csv(r"./data/train-left-down.csv",encoding="utf_8_sig")
train_right_down=pd.read_csv(r"./data/train-right-down.csv",encoding="utf_8_sig")
train_right_up=pd.read_csv(r"./data/train-right-up.csv",encoding="utf_8_sig")
train_left_up
PassengerId | Survived | Pclass | Name | |
---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) |
4 | 5 | 0 | 3 | Allen, Mr. William Henry |
... | ... | ... | ... | ... |
434 | 435 | 0 | 1 | Silvey, Mr. William Baird |
435 | 436 | 1 | 1 | Carter, Miss. Lucile Polk |
436 | 437 | 0 | 3 | Ford, Miss. Doolina Margaret "Daisy" |
437 | 438 | 1 | 2 | Richards, Mrs. Sidney (Emily Hocking) |
438 | 439 | 0 | 1 | Fortune, Mr. Mark |
439 rows × 4 columns
【提示】结合之前我们加载的train.csv数据,大致预测一下上面的数据是什么
train_right_up
Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|
0 | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... |
434 | male | 50.0 | 1 | 0 | 13507 | 55.9000 | E44 | S |
435 | female | 14.0 | 1 | 2 | 113760 | 120.0000 | B96 B98 | S |
436 | female | 21.0 | 2 | 2 | W./C. 6608 | 34.3750 | NaN | S |
437 | female | 24.0 | 2 | 3 | 29106 | 18.7500 | NaN | S |
438 | male | 64.0 | 1 | 4 | 19950 | 263.0000 | C23 C25 C27 | S |
439 rows × 8 columns
2.4.2:任务二:使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up
axis: 0是行,1是列
data1=pd.concat([train_left_up,train_right_up],axis=1)
data1
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
434 | 435 | 0 | 1 | Silvey, Mr. William Baird | male | 50.0 | 1 | 0 | 13507 | 55.9000 | E44 | S |
435 | 436 | 1 | 1 | Carter, Miss. Lucile Polk | female | 14.0 | 1 | 2 | 113760 | 120.0000 | B96 B98 | S |
436 | 437 | 0 | 3 | Ford, Miss. Doolina Margaret "Daisy" | female | 21.0 | 2 | 2 | W./C. 6608 | 34.3750 | NaN | S |
437 | 438 | 1 | 2 | Richards, Mrs. Sidney (Emily Hocking) | female | 24.0 | 2 | 3 | 29106 | 18.7500 | NaN | S |
438 | 439 | 0 | 1 | Fortune, Mr. Mark | male | 64.0 | 1 | 4 | 19950 | 263.0000 | C23 C25 C27 | S |
439 rows × 12 columns
2.4.3 任务三:使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。
#写入代码
data2=pd.concat([train_left_down,train_right_down],axis=1)
2.4.4 任务四:使用DataFrame自带的方法join方法和append:完成任务二和任务三的任务
#写入代码
# data1 = train_left_up.join(train_right_up)
# data1 = pd.merge(train_left_up,train_right_up,left_index=True,right_index=True)
data=pd.concat([data1,data2],axis=0)
data
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
447 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.0000 | NaN | S |
448 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.0000 | B42 | S |
449 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.4500 | NaN | S |
450 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.0000 | C148 | C |
451 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.7500 | NaN | Q |
891 rows × 12 columns
2.4.6 任务六:完成的数据保存为result.csv
#写入代码
data.to_csv(r"./result.csv",encoding="utf_8_sig")
2.5 换一种角度看数据
2.5.1 任务一:将我们的数据变为Series类型的数据
等同于行专列 不过注意的是Serie是一维度数据
#写入代码
data.stack()
0 PassengerId 1
Survived 0
Pclass 3
Name Braund, Mr. Owen Harris
Sex male
...
451 SibSp 0
Parch 0
Ticket 370376
Fare 7.75
Embarked Q
Length: 9826, dtype: object
#写入代码