一、HMM模型
1、HMM模型的输入和输出
HMM(Hidden Markov Model),中文称作隐含马尔可夫模型,因俄国数学家马尔可夫而得名。它一般以文本序列数据为输入,以该序列对应得隐含序列为输出。
什么是隐含序列:
序列数据中每个单元包含得隐性信息,这些隐性信息之间也存在一定关联。
举个列子:
给定一段文本: "人生该如何起头"
我们看到的这句话可以叫做: 观测序列
我们可以将这句话以词为单位进行划分得到:
["人生", "该", "如何", "起头"]
那么每个词对应的词性就是它的隐含序列, 如:
["n", "r", "r", "v"]
2、HMM模型的作用
在NLP领域,HMM用来解决文本序列标注问题。如分词,词性标注,命名实体识别都可以看作是序列标注问题。
HMM模型使用过程简述
首先,HMM模型表示为:lambda = HMM(A, B, pi),其中A, B, pi都是模型的参数,分别称作:转移概率矩阵,发射概率矩阵和初始概率矩阵。
接着,开始训练HMM模型,语料就是事先准备好的一定数量的观测序列及其对应的隐含序列,通过极大似然估计求得一组参数,使由观测序列到对应隐含序列的概率最大。
在训练过程中,为了简化计算,马尔可夫提出一种假设:隐含序列中每个单元的可能性只与上一个单元有关,这个假设就是著名的隐含假设。
训练后,就得到了具备预测能力的新模型:lambda = HMM(