已知:1^2+2^2+3^2+……+n^2 =n(n+1)(2n+1)/6 —①
那么1^2+2^2+3^2+……+n^2+……+(2n+1)^2 =(2n+1)(n+1)(4n+3)/3 —②
又有2^2+4^2+6^2+……+(2n)^2 =4[1^2+2^2+3^2+……+n^2]=4*①=2n(n+1)(2n+1)/3 —③
设所求为S 比较②和③可知 S=②-③=(2n+1)(n+1)(4n+3)/3-2n(n+1)(2n+1)/3
=(2n+1)(n+1)(2n+3)/3 —④
因为S是2n+1项的和 把它一般化 则奇数项平方和一般公式Sn=n(n+1)(n+2)/6
#include<iostream>
using namespace std;
int main()
{
__int64 sum,n;
while(scanf("%I64d", &n)!=EOF)
{
if(n%2)
{
sum = n*(n+1)*(n+2)/6;
printf("%I64d\n", sum);
}
}
return 0;
}