K Nearest Neibours

本文深入讲解了K近邻(KNN)算法的实现原理,通过Python代码演示如何创建数据集、计算距离并进行分类。KNN是一种基本的监督学习算法,适用于分类和回归任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0] # shape[0]:get the number of rows of the dataset matrix (i.e.size of the dataset)
    diffMat = tile(inX, (dataSetSize,1)) - dataSet # inX:unlabelled data, get the difference of inX and dataSet(each element in dataSet)
    sqDiffMat = diffMat ** 2 # return square of each element in diffMat
    sqDistances = sqDiffMat.sum(axis=1) # axis=n :remove dimension n then return sum?
    distances = sqDistances ** 0.5 # Euclid distance
    sortedDisIndicies = distances.argsort() #return index of the sorted number(from small to large)
    classCount={}
    for i in range(k):
        voteIlabel = labels[sortedDisIndicies[i]] # get the nearest k number lables
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #find the correspond label(if there is not, append '0' to the dict)
    sortedClassCount = sorted(classCount.items(),
        key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0] # the label with most votes

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值