今天来介绍一下KNN+HOG手写体数字识别,首先贴出图片,这是opencv自带的一张图片,
E:\opencv\opencv\sources\samples\data,在此文件夹里,我们会发现一张手写体的图片
之前单纯用像素点训练,他的准确率是这样的
发现准确率有点低,于是我们改用KNN+HOG来进行训练,可以看到识别数字的准确率提高了很多
接下来贴出代码
#include<opencv2\opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;
using namespace cv::ml;
int main()
{
Mat img = imread("digits.png");
Mat gray;
cvtColor(img, gray, CV_BGR2GRAY);
int b = 20;
int rows = gray.rows / b; //原图为1000*2000
int cols = gray.cols / b; //裁剪为5000个20*20的小图块
cout << "rows :" << rows << endl;
cout << "cols :" << cols << endl;
Mat data(5000, 576, CV_32FC1);
Mat labels; //特征矩阵
//创建HOG
HOGDescriptor detector(Size(20, 20), Size(8, 8), Size(4, 4), Size(4, 4), 9);
vector<float> descriptor;
for (int col = 0; col < cols; col++)
{
int offsetCol = col*b; //列上的偏移量
for (int row = 0; row < rows; row++)
{
int offsetRow = row*b; //行上的偏移量
//截取20*20的小块
Mat tmp;
gray(Range(offsetRow, offsetRow + b), Range(offsetCol, offsetCol + b)).copyTo(tmp);
imshow("t", tmp);
detector.compute(tmp, descriptor);
for (int k = 0;k < descriptor.size();k++) {
data.at<float>(col*rows + row, k) = descriptor[k];
}
labels.push_back((int)row / 5); //对应的标注
}
}
data.convertTo(data, CV_32F); //uchar型转换为cv_32f
int samplesNum = data.rows;
cout << "samplesNum :" <<samplesNum;
int trainNum = 3000;
Mat trainData, trainLabels;
trainData = data(Range(0, trainNum), Range::all()); //前3000个样本为训练数据
trainLabels = labels(Range(0, trainNum), Range::all());
//使用KNN算法
int K = 5;
Ptr<TrainData> tData = TrainData::create(trainData, ROW_SAMPLE, trainLabels);
Ptr<KNearest> model = KNearest::create();
//Ptr<KNearest> model = StatModel::load<KNearest>("KNN.xml");
model->setDefaultK(K);
model->setIsClassifier(true);
model->train(tData);
model->save("KNN+HOG.xml");
//预测分类
double train_hr = 0, test_hr = 0;
Mat response;
// compute prediction error on train and test data
for (int i = 0; i < samplesNum; i++)
{
Mat sample = data.row(i);
float r = model->predict(sample); //对所有行进行预测
//预测结果与原结果相比,相等为1,不等为0
r = std::abs(r - labels.at<int>(i)) <= FLT_EPSILON ? 1.f : 0.f;
if (i < trainNum)
train_hr += r; //累积正确数
else
test_hr += r;
}
cout << "train_hr :" << train_hr << endl << "test_hr :" << test_hr << endl;
test_hr /= samplesNum - trainNum;
train_hr = trainNum > 0 ? train_hr / trainNum : 1.;
printf("accuracy: train = %.1f%%, test = %.1f%%\n",
train_hr*100., test_hr*100.);
waitKey(0);
return 0;
}
然后就就会发现工程目录下生成了KNN+HOG.xml的文件
然后就用Algorithm类的load方法加载图片,进行手写体图片的预测了
识别有误差主要还是训练集的问题,可以在该基础上不断添加数据集进行训练,成功率会更高。