emmmm这题思路有点奇特。。然后实现起来还有很多坑点。。比起那些思路一般实现困难的题更讨人喜欢→_→
显然要先找出树的直径。。然后找出来后先处理直径以外的点。。最远距离肯定是和最远点的距离,然后删完之后直径就可以随便弄了。。。
实现的过程有个坑点就是。。得从叶子往里删。。所以在删的时候要找到其中一个最远点的距离进行排序。。这样就能确保往里删了。。。然后还爆int。。
代码由于推掉重写了几次。。所以并不是特别好看。。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define inf 1e9
#define eps 1e-8
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define succ(x) (1<<x)
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define NM 200005
#define nm 800005
#define pi 3.141592653
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f*x;
}
struct edge{int t;edge*next;}e[nm],*h[NM],*o=e;
void add(int x,int y){o->t=y;o->next=h[x];h[x]=o++;}
int n,_x,_y,_t,__t,tmp[NM],d[NM],b[NM],tot,f[NM],c[NM];
ll ans;
bool v[NM];
bool cmp(int x,int y){return d[x]>d[y];}
void bfs(int u){
queue<int >q;
mem(d);mem(v);
inc(i,1,n)d[i]=inf;
d[u]=0;v[u]++;q.push(u);
while(!q.empty()){
int t=q.front();q.pop();v[t]=false;
link(t)if(d[j->t]>d[t]+1){
d[j->t]=d[t]+1;
if(!v[j->t])q.push(j->t),v[j->t]++;
}
}
}
void dfs(int x){
b[++tot]=x;v[x]++;
if(x==_y)
inc(i,1,tot)c[i]=b[i];
link(x)if(!v[j->t])dfs(j->t);
tot--;v[x]=false;
}
int main(){
n=read();
inc(i,1,n-1){_x=read();_y=read();add(_x,_y);add(_y,_x);}
bfs(1);
inc(i,1,n)if(d[i]>d[_x])_x=i;
bfs(_x);
inc(i,1,n)f[i]=d[i];
inc(i,1,n)if(d[i]>d[_y])_y=i;
bfs(_y);
mem(v);
dfs(_x);
//inc(i,1,n)printf("%d ",c[i]);
inc(i,1,n+1)if(c[i])b[i]=c[i];else{tot=i-1;break;}
//printf("%d %d\n",_x,_y);
//inc(i,1,tot)printf("%d ",b[i]);
inc(i,1,tot)v[b[i]]++;
inc(i,1,n)if(v[i])ans+=d[i];
else ans+=max(d[i],f[i]);
printf("%I64d\n",ans);
inc(i,1,n)tmp[i]=i;
sort(tmp+1,tmp+1+n,cmp);
for(int k=1,i=tmp[k];k<n;i=tmp[++k])if(!v[i])
if(f[i]>d[i])printf("%d %d %d\n",_x,i,i);
else printf("%d %d %d\n",_y,i,i);
for(int k=1,i=tmp[k];k<n;i=tmp[++k])if(v[i])
printf("%d %d %d\n",_y,i,i);
return 0;
}
You are given an unweighted tree with n vertices. Then n - 1 following operations are applied to the tree. A single operation consists of the following steps:
- choose two leaves;
- add the length of the simple path between them to the answer;
- remove one of the chosen leaves from the tree.
Initial answer (before applying operations) is 0. Obviously after n - 1 such operations the tree will consist of a single vertex.
Calculate the maximal possible answer you can achieve, and construct a sequence of operations that allows you to achieve this answer!
The first line contains one integer number n (2 ≤ n ≤ 2·105) — the number of vertices in the tree.
Next n - 1 lines describe the edges of the tree in form ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that given graph is a tree.
In the first line print one integer number — maximal possible answer.
In the next n - 1 lines print the operations in order of their applying in format ai, bi, ci, where ai, bi — pair of the leaves that are chosen in the current operation (1 ≤ ai, bi ≤ n), ci (1 ≤ ci ≤ n, ci = ai or ci = bi) — choosen leaf that is removed from the tree in the current operation.
See the examples for better understanding.
3 1 2 1 3
3 2 3 3 2 1 1
5 1 2 1 3 2 4 2 5
9 3 5 5 4 3 3 4 1 1 4 2 2