- #include "opencv2/objdetect/objdetect.hpp"
- #include "opencv2/highgui/highgui.hpp"
- #include "opencv2/imgproc/imgproc.hpp"
- #include "opencv2/video/tracking.hpp"
- #include <iostream>
- #include <stdio.h>
- using namespace std;
- using namespace cv;
- /** 函数声明 */
- void detectAndDisplay(Mat& frame);
- /** 全局变量 */
- string face_cascade_name = "haarcascade_frontalface_alt.xml";
- //string eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
- CascadeClassifier face_cascade;
- //CascadeClassifier eyes_cascade;
- string window_name = "Face detection with Kalman";
- RNG rng(12345);
- struct face{
- Point leftTop=0;
- int width=0;
- int height=0;
- };
- face preFace;
- /** @主函数 */
- int main()
- {
- //kalman参数设置
- int stateNum = 4;
- int measureNum = 2;
- KalmanFilter KF(stateNum, measureNum, 0);
- //Mat processNoise(stateNum, 1, CV_32F);
- Mat measurement = Mat::zeros(measureNum, 1, CV_32F);
- KF.transitionMatrix = *(Mat_<float>(stateNum, stateNum) << 1, 0, 1, 0,//A 状态转移矩阵
- 0, 1, 0, 1,
- 0, 0, 1, 0,
- 0, 0, 0, 1);
- //这里没有设置控制矩阵B,默认为零
- setIdentity(KF.measurementMatrix);//H=[1,0,0,0;0,1,0,0] 测量矩阵
- setIdentity(KF.processNoiseCov, Scalar::all(1e-5));//Q高斯白噪声,单位阵
- setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));//R高斯白噪声,单位阵
- setIdentity(KF.errorCovPost, Scalar::all(1));//P后验误差估计协方差矩阵,初始化为单位阵
- randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));//初始化状态为随机值
- //读入视频
- if (!face_cascade.load(face_cascade_name)){ cout << "--(!)Error loading\n" << endl; };
- Mat frame, frame2;
- VideoCapture cap;
- cap.open("me1.mp4");
- //cap.open("me2.mp4");
- //cap.open("me3.mp4");
- while (true){
- for (int i = 0; i < 1; i++){
- cap >> frame;
- }
- if (!frame.empty())
- {
- resize(frame, frame2, Size(), 0.5, 0.5, INTER_LINEAR);
- Mat prediction = KF.predict();
- Point predict_pt = Point((int)prediction.at<float>(0), (int)prediction.at<float>(1));
- detectAndDisplay(frame2);
- measurement.at<float>(0) = (float)preFace.leftTop.x;
- measurement.at<float>(1) = (float)preFace.leftTop.y;
- KF.correct(measurement);
- //画卡尔曼的效果
- Point center(predict_pt.x + preFace.width*0.5, predict_pt.y + preFace.height*0.5);
- ellipse(frame2, center, Size(preFace.width*0.3, preFace.height*0.3), 0, 0, 360, Scalar(0, 0, 255), 4, 8, 0);
- circle(frame2, center, 3, Scalar(0, 0, 255), -1);
- imshow(window_name, frame2);
- waitKey(1);
- }
- else
- {
- printf(" --(!) No frame -- Break!");
- break;
- }
- }
- return 0;
- }
- /** @函数 detectAndDisplay */
- void detectAndDisplay(Mat& frame)
- {
- std::vector<Rect> faces;
- Mat frame_gray;
- int Max_area=0;
- int faceID=0;
- cvtColor(frame, frame_gray, CV_BGR2GRAY);
- equalizeHist(frame_gray, frame_gray);
- //-- 多尺寸检测人脸
- face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
- //找出最大的脸,可以去除不是脸的误检,这些误检一般比较小
- for (int i = 0; i < faces.size(); i++)
- {
- if ((int)(faces[i].width*faces[i].height) > Max_area){
- Max_area =(int) faces[i].width*faces[i].height;
- faceID=i;
- }
- }
- if (faces.size() > 0)//必须是检测到脸才绘制当前人脸圆圈,并且只能绘制最大的脸
- {
- preFace.leftTop.x = faces[faceID].x;
- preFace.leftTop.y = faces[faceID].y;
- preFace.height = faces[faceID].height;
- preFace.width = faces[faceID].width;
- Point center(faces[faceID].x + faces[faceID].width*0.5, faces[faceID].y + faces[faceID].height*0.5);
- ellipse(frame, center, Size(faces[faceID].width*0.5, faces[faceID].height*0.5), 0, 0, 360, Scalar(0, 255, 0), 1, 8, 0);
- circle(frame, center, 3, Scalar(0, 255,0), -1);
- }
- else{//没检测到人脸绘制之前的人脸
- Point center(preFace.leftTop.x + preFace.width*0.5, preFace.leftTop.y + preFace.height*0.5);
- ellipse(frame, center, Size(preFace.width*0.5, preFace.height*0.5), 0, 0, 360, Scalar(0, 255, 0), 1, 8, 0);
- circle(frame, center, 3, Scalar(0, 255, 0), -1);
- }
- }
卡尔曼滤波+opencv 实现人脸跟踪
最新推荐文章于 2025-05-26 20:51:47 发布