1. Unsupervised learning introduction
- supervised learning - training set:
- unpervised learning - training set:
2. K-means algorithm
- randomly select K cluster centroids
- repeat
- for every example, select the closest centroid to it
- update the new centroid
3. Optimization objective
4. Random initialization
- randomly initialize K-means algorithm many times, e.g. 100 times, compare the optimization objective function, pick the lowest cost
5. Choosing the number of clusters
- elbow method
- select the break point
有监督学习最常见的是regression & classification
无监督学习包括density estimation & clustering
- PCA和很多deep learning算法都属于无监督学习
回归问题中有可能因为学习率设置过大产生随着迭代次数增加,cost function反倒增大的情况。但聚类是不会产生这样的问题的,因为每一次聚类都保证了使J下降,且无学习率做参数。