从1-n这n个数里面,随机选出若干个数,使之和为sum

本文探讨了两种求组合之和的问题:一是从1到n的整数中选取若干数使其和等于给定值sum的0-1背包问题;二是利用无限数量的特定面额组合成目标金额N的方法。通过递归和回溯策略给出了解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个接口find_factor(int sum,int n),实现这个功能,求出从1到n的n个数中选出若干个数使之和为sum的所有可能情况,并打印出来;

分析:典型的0-1背包问题,总和一定,挑出几个和满足条件的。不过这个用递归的思想解决比较容易,也容易懂,核心思想见代码:

代码如下:

//  [9/17/2013 qingezha] 和为sum ,加数为 1 到 n,随机选出若干个数,使之和为sum,整数相加,中兴面试
void find_factor(int sum, int n)   
{  
	list<int>list1;  
	int ie = 1;
	// 递归出口  
	if(n <= 0 || sum <= 0)  
		return;  

	// 输出找到的结果  
	if(sum == n)  
	{   
		// 反转list  
		list1.reverse();  
		cout<<ie++;
		for(list<int>::iterator iter = list1.begin(); iter != list1.end(); iter++)  
			cout<<" "<< *iter << " + ";  
		cout << n << endl;  
		list1.reverse();      
	}  

	list1.push_front(n);       //典型的01背包问题  
	find_factor(sum-n, n-1);   //放n,n-1个数填满sum-n  
	list1.pop_front();  
	find_factor(sum, n-1);     //不放n,n-1个数填满sum   

} 

如果这些数可以重复使用,那么将是另外一种情况:

比如,有1分 2分 5分 10 分 无数张,求多少中组合可以使总数达到N分

代码如下:

//  [9/24/2013 qingezha] 有1分 2分 5分 10分无限张,求有多少种组合可以组合成 N 分
//	回溯解空间中寻找答案
int coins[4] = {1,2,5,10};
int total = 0;
vector<int> solution;
int count = 0;
void dfs(int index,int target)
{
	if (target == total)
	{
		++count;
		cout<<count<<":";
		for(int i=0;i<solution.size();++i)
			cout<<solution[i]<<" ";
		cout<<endl;
	}
	if(total>target) return;				//总和溢出了,就退回
	for (int i=index;i<4;++i)				//i 从 index 开始
	{
		total += coins[i];
		solution.push_back(coins[i]);		//放进去一个
		dfs(i,target);						//继续放,然后检查总和是否为target,
		solution.pop_back();
		total -= coins[i];
	}
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值