题目:
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace
(spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will
be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
这道题一开始想歪了....后来看了别人的,发现只是把一个二维的压缩成一维的,然后问题就转化为求最大子段和的问题了
代码如下(代码写的好捉急的说...):
#include<stdio.h>
int num[100][100];
int sum[100];
int f[100];
int N;
int sum_col(int i,int j,int col){
int ans,row;
ans=0;
for(row=i;row<j+1;row++)
ans+=num[row][col];
return ans;
}
int main(){
int i,j,k,col,ans,tmp;
tmp=ans=-1300000;
scanf("%d",&N);
for(i=0;i<N;i++)
for(j=0;j<N;j++)
scanf("%d",&num[i][j]);
for(i=0;i<N;i++)
for(j=i;j<N;j++){
for(col=0;col<N;col++)
sum[col]=sum_col(i,j,col);
for(k=0;k<N;k++){
if(f[k-1]<0)
f[k]=sum[k];
else
f[k]=sum[k]+f[k-1];
if(f[k]>tmp)
tmp=f[k];
}
if(tmp>ans)
ans=tmp;
}
printf("%d\n",ans);
return 0;
}