POJ- 1050- to the Max 【动态规划】

本文介绍了一种求解二维数组中最大子矩形和的高效算法。通过将二维问题转化为一系列一维问题来简化计算过程,利用前缀和的思想预处理数组,进而快速计算任意子矩形的和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

To the Max

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 52276 Accepted: 27629

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15

题意:题目的意思很简单,就是求已知的二维数组中最大的子二维数组和(说子矩阵不合适,就说成子数组,理解就行)

题解:我们都处理过一维的,现在是二维的,所以我们要想办法把二维的转化成一维处理。我们用一个二维数组记录每一行前j列的和,然后用sum[k][j]-sun[k][i-1],就说明第k行第i列到第j列的和。具体见代码:

AC:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<climits>
using namespace std; 
const int maxn=101;
int arr[maxn][maxn]={0},sum[maxn][maxn]={0};
int main(void){
    int n;
    scanf("%d",&n);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			cin>>arr[i][j];
			sum[i][j]=sum[i][j-1]+arr[i][j]; //记录每一行前j列的和
		}
	} 
	int max=INT_MIN,temp;//max初始化为整数最小值
	for(int i=1;i<=n;i++){ //列
		for(int j=i;j<=n;j++){ //列
			temp=0;
			for(int k=0;k<=n;k++){ //行
				if(temp<0) temp=0; 
				temp+=sum[k][j]-sum[k][i-1];
				if(temp>max) max=temp; //一旦有比之前的最大值就取代记录
				
			}
		}
	}
	printf("%d\n",max);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值