# 背景建模
import numpy as np
import cv2
# 加载视频
cap = cv2.VideoCapture("test.avi")
# 创建混合高斯模型用于背景建模
background_model = cv2.createBackgroundSubtractorMOG2()
# 形态学操作核
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
while True:
# 读取下一帧图像
ret, frame = cap.read()
# 更新模型参数,对预测结果进行开运算
fgmask = background_model.apply(frame)
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
# 轮廓筛选:人
_, contours, _ = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for ct in contours:
perimeter = cv2.arcLength(ct, True)
if perimeter > 188:
(x, y, w, h) = cv2.boundingRect(ct)
frame = cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
# 显示
cv2.imshow("test", frame)
cv2.imshow("background", fgmask)
ch = cv2.waitKey(100)
if ch == 'q&#
python进行背景建模和光流估计
最新推荐文章于 2024-01-18 23:07:27 发布