题意:给你一个函数f(x),一个数列,你有一次操作机会,能操作数列的一个区间,让区间里所有数都变成f(x),也可以不变。问操作完之后最大子段和是多少。
思路:求出每个f(x)和 x 的差,有正有负,题目就变成了这个序列的最大子段和问题,O(n)扫一遍就搞定了。
Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 138 Accepted Submission(s): 92
Problem Description
There is a number sequence
A1,A2....An
,you can select a interval [l,r] or not,all the numbers
Ai(l≤i≤r)
will become
f(Ai)
.
f(x)=(1890x+143)mod10007
.After that,the sum of n numbers should be as much as possible.What is the maximum sum?
Input
There are multiple test cases.
First line of each case contains a single integer n. (1≤n≤105)
Next line contains n integers A1,A2....An . (0≤Ai≤104)
It's guaranteed that ∑n≤106 .
First line of each case contains a single integer n. (1≤n≤105)
Next line contains n integers A1,A2....An . (0≤Ai≤104)
It's guaranteed that ∑n≤106 .
Output
For each test case,output the answer in a line.
Sample Input
2 10000 9999 5 1 9999 1 9999 1
Sample Output
19999 22033
Source
Recommend
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <iomanip>
#include <time.h>
#include <set>
#include <map>
#include <stack>
using namespace std;
typedef long long LL;
const int INF=0x7fffffff;
const int MAX_N=10000;
int n;
int A[100009];
int fa[100009];
int f(int x){
return (1890*x+143)%10007;
}
int main(){
while(scanf("%d",&n)!=EOF){
int sum=0;
int sum2=0;
int cursum=0;
for(int i=0;i<n;i++){
scanf("%d",&A[i]);
sum+=A[i];
fa[i]=f(A[i])-A[i];
if(fa[i]>0){
cursum+=fa[i];
sum2=max(sum2,cursum);
}
else{
cursum+=fa[i];
if(cursum<0){
cursum=0;
}
}
}
printf("%d\n",sum+sum2);
}
return 0;
}