Gaussian Splatting、Talking Head、Portrait Animation、Video Editing

本文探讨了3DGaussianSplatting的改进方法Pixel-GS,图像内插领域的In-ContextMatting,以及在人脸动画、超分辨率和长视频生成等领域的创新技术。文章概述了这些技术如何提高渲染质量和效率,同时关注了挑战与未来发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文首发于公众号:机器感知

Gaussian Splatting、Talking Head、Portrait Animation、Video Editing

Pixel-GS: Density Control with Pixel-aware Gradient for 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results while advancing real-time rendering performance. However, it relies heavily on the quality of the initial point cloud, resulting in blurring and needle-like artifacts in areas with insufficient initializing points. This is mainly attributed to the point cloud growth condition in 3DGS that only considers the average gradient magnitude of points from observable views, thereby failing to grow for large Gaussians that are observable for many viewpoints while many of them are only covered in the boundaries. To this end, we propose a novel method, named Pixel-GS, to take into account the number of pixels covered by the Gaussian in each view during the computation of the growth condition. We regard the covered pixel numbers as the weights to dynamically average the gradients from different views, such that the growth of large Gaussians can be prompted. As a result, points within the areas with insufficient initializing points can be grown more effectively, leading to a more accurate and detailed reconstruction. In addition, we propose a simple yet effective strategy to scale the gradient field according to the distance to the camera, to suppress the growth of floaters near the camera. Extensive experiments both qualitatively and quantitatively demonstrate that our method achieves state-of-the-art rendering quality while maintaining real-time rendering speed, on the challenging Mip-NeRF 360 and Tanks & Temples datasets.

In-Context Matting

图片

We introduce in-context matting, a novel task setting of image matting. Given a reference image of a certain foreground and guided priors such as points, scribbles, and masks, in-context matting enables automatic alpha estimation on a batch of target images of the same foreground category, without additional auxiliary input. This setting marries good performance in auxiliary input-based matting and ease of use in automatic matting, which finds a good trade-off between customization and automation. To overcome the key challenge of accurate foreground matching, we introduce IconMatting, an in-context matting model built upon a pre-trained text-to-image diffusion model. Conditioned on inter- and intra-similarity matching, IconMatting can make full use of reference context to generate accurate target alpha mattes. To benchmark the task, we also introduce a novel testing dataset ICM-$57$, covering 57 groups of real-world images. Quantitative and qualitative results on the ICM-57 testing set show that IconMatting rivals the accuracy of trimap-based matting while retaining the automation level akin to automatic matting. Code is available at https://github.com/tiny-smart/in-context-matting

X-Portrait: Expressive Portrait Animation with Hierarchical Motion  Attention

图片

We propose X-Portrait, an innovative conditional diffusion model tailored for generating expressive and temporally coherent portrait animation. Specifically, given a single portrait as appearance reference, we aim to animate it with motion derived from a driving video, capturing both highly dynamic and subtle facial expressions along with wide-range head movements. As its core, we leverage the generative prior of a pre-trained diffusion model as the rendering backbone, while achieve fine-grained head pose and expression control with novel controlling signals within the framework of ControlNet. In contrast to conventional coarse explicit controls such as facial landmarks, our motion control module is learned to interpret the dynamics directly from the original driving RGB inputs. The motion accuracy is further enhanced with a patch-based local control module that effectively enhance the motion attention to small-scale nuances like eyeball positions. Notably, to mitigate the identity leakage from the driving signals, we train our motion control modules with scaling-augmented cross-identity images, ensuring maximized disentanglement from the appearance reference modules. Experimental results demonstrate the universal effectiveness of X-Portrait across a diverse range of facial portraits and expressive driving sequences, and showcase its proficiency in generating captivating portrait animations with consistently maintained identity characteristics.

Adaptive Super Resolution For One-Shot Talking-Head Generation

图片

The one-shot talking-head generation learns to synthesize a talking-head video with one source portrait image under the driving of same or different identity video. Usually these methods require plane-based pixel transformations via Jacobin matrices or facial image warps for novel poses generation. The constraints of using a single image source and pixel displacements often compromise the clarity of the synthesized images. Some methods try to improve the quality of synthesized videos by introducing additional super-resolution modules, but this will undoubtedly increase computational consumption and destroy the original data distribution. In this work, we propose an adaptive high-quality talking-head video generation method, which synthesizes high-resolution video without additional pre-trained modules. Specifically, inspired by existing super-resolution methods, we down-sample the one-shot source image, and then adaptively reconstruct high-frequency details via an encoder-decoder module, resulting in enhanced video clarity. Our method consistently improves the quality of generated videos through a straightforward yet effective strategy, substantiated by quantitative and qualitative evaluations. The code and demo video are available on: \url{https://github.com/Songluchuan/AdaSR-TalkingHead/}.

Fill in the ____ (a Diffusion-based Image Inpainting Pipeline)

图片

Image inpainting is the process of taking an image and generating lost or intentionally occluded portions. Inpainting has countless applications including restoring previously damaged pictures, restoring the quality of images that have been degraded due to compression, and removing unwanted objects/text. Modern inpainting techniques have shown remarkable ability in generating sensible completions for images with mask occlusions. In our paper, an overview of the progress of inpainting techniques will be provided, along with identifying current leading approaches, focusing on their strengths and weaknesses. A critical gap in these existing models will be addressed, focusing on the ability to prompt and control what exactly is generated. We will additionally justify why we think this is the natural next progressive step that inpainting models must take, and provide multiple approaches to implementing this functionality. Finally, we will evaluate the results of our approaches by qualitatively checking whether they generate high-quality images that correctly inpaint regions with the objects that they are instructed to produce.

A Unified Module for Accelerating STABLE-DIFFUSION: LCM-LORA

图片

This paper presents a comprehensive study on the unified module for accelerating stable-diffusion processes, specifically focusing on the lcm-lora module. Stable-diffusion processes play a crucial role in various scientific and engineering domains, and their acceleration is of paramount importance for efficient computational performance. The standard iterative procedures for solving fixed-source discrete ordinates problems often exhibit slow convergence, particularly in optically thick scenarios. To address this challenge, unconditionally stable diffusion-acceleration methods have been developed, aiming to enhance the computational efficiency of transport equations and discrete ordinates problems. This study delves into the theoretical foundations and numerical results of unconditionally stable diffusion synthetic acceleration methods, providing insights into their stability and performance for model discrete ordinates problems. Furthermore, the paper explores recent advancements in diffusion model acceleration, including on device acceleration of large diffusion models via gpu aware optimizations, highlighting the potential for significantly improved inference latency. The results and analyses in this study provide important insights into stable diffusion processes and have important ramifications for the creation and application of acceleration methods specifically, the lcm-lora module in a variety of computing environments.

PKU-DyMVHumans: A Multi-View Video Benchmark for High-Fidelity Dynamic  Human Modeling

图片

High-quality human reconstruction and photo-realistic rendering of a dynamic scene is a long-standing problem in computer vision and graphics. Despite considerable efforts invested in developing various capture systems and reconstruction algorithms, recent advancements still struggle with loose or oversized clothing and overly complex poses. In part, this is due to the challenges of acquiring high-quality human datasets. To facilitate the development of these fields, in this paper, we present PKU-DyMVHumans, a versatile human-centric dataset for high-fidelity reconstruction and rendering of dynamic human scenarios from dense multi-view videos. It comprises 8.2 million frames captured by more than 56 synchronized cameras across diverse scenarios. These sequences comprise 32 human subjects across 45 different scenarios, each with a high-detailed appearance and realistic human motion. Inspired by recent advancements in neural radiance field (NeRF)-based scene representations, we carefully set up an off-the-shelf framework that is easy to provide those state-of-the-art NeRF-based implementations and benchmark on PKU-DyMVHumans dataset. It is paving the way for various applications like fine-grained foreground/background decomposition, high-quality human reconstruction and photo-realistic novel view synthesis of a dynamic scene. Extensive studies are performed on the benchmark, demonstrating new observations and challenges that emerge from using such high-fidelity dynamic data. The dataset is available at: https://pku-dymvhumans.github.io.

Can Language Models Pretend Solvers? Logic Code Simulation with LLMs

图片

Transformer-based large language models (LLMs) have demonstrated significant potential in addressing logic problems. capitalizing on the great capabilities of LLMs for code-related activities, several frameworks leveraging logical solvers for logic reasoning have been proposed recently. While existing research predominantly focuses on viewing LLMs as natural language logic solvers or translators, their roles as logic code interpreters and executors have received limited attention. This study delves into a novel aspect, namely logic code simulation, which forces LLMs to emulate logical solvers in predicting the results of logical programs. To further investigate this novel task, we formulate our three research questions: Can LLMs efficiently simulate the outputs of logic codes? What strength arises along with logic code simulation? And what pitfalls? To address these inquiries, we curate three novel datasets tailored for the logic code simulation task and undertake thorough experiments to establish the baseline performance of LLMs in code simulation. Subsequently, we introduce a pioneering LLM-based code simulation technique, Dual Chains of Logic (DCoL). This technique advocates a dual-path thinking approach for LLMs, which has demonstrated state-of-the-art performance compared to other LLM prompt strategies, achieving a notable improvement in accuracy by 7.06% with GPT-4-Turbo.

EVA: Zero-shot Accurate Attributes and Multi-Object Video Editing

图片

Current diffusion-based video editing primarily focuses on local editing (\textit{e.g.,} object/background editing) or global style editing by utilizing various dense correspondences. However, these methods often fail to accurately edit the foreground and background simultaneously while preserving the original layout. We find that the crux of the issue stems from the imprecise distribution of attention weights across designated regions, including inaccurate text-to-attribute control and attention leakage. To tackle this issue, we introduce EVA, a \textbf{zero-shot} and \textbf{multi-attribute} video editing framework tailored for human-centric videos with complex motions. We incorporate a Spatial-Temporal Layout-Guided Attention mechanism that leverages the intrinsic positive and negative correspondences of cross-frame diffusion features. To avoid attention leakage, we utilize these correspondences to boost the attention scores of tokens within the same attribute across all video frames while limiting interactions between tokens of different attributes in the self-attention layer. For precise text-to-attribute manipulation, we use discrete text embeddings focused on specific layout areas within the cross-attention layer. Benefiting from the precise attention weight distribution, EVA can be easily generalized to multi-object editing scenarios and achieves accurate identity mapping. Extensive experiments demonstrate EVA achieves state-of-the-art results in real-world scenarios. Full results are provided at https://knightyxp.github.io/EVA/

ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language  Models

图片

Parameter-efficient fine-tuning (PEFT) is widely studied for its effectiveness and efficiency in the era of large language models. Low-rank adaptation (LoRA) has demonstrated commendable performance as a popular and representative method. However, it is implemented with a fixed intrinsic rank that might not be the ideal setting for the downstream tasks. Recognizing the need for more flexible downstream task adaptation, we extend the methodology of LoRA to an innovative approach we call allocating low-rank adaptation (ALoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process. First, we propose a novel method, AB-LoRA, that can effectively estimate the importance score of each LoRA rank. Second, guided by AB-LoRA, we gradually prune abundant and negatively impacting LoRA ranks and allocate the pruned LoRA budgets to important Transformer modules needing higher ranks. We have conducted experiments on various tasks, and the experimental results demonstrate that our ALoRA method can outperform the recent baselines with comparable tunable parameters.

latentSplat: Autoencoding Variational Gaussians for Fast Generalizable  3D Reconstruction

图片

We present latentSplat, a method to predict semantic Gaussians in a 3D latent space that can be splatted and decoded by a light-weight generative 2D architecture. Existing methods for generalizable 3D reconstruction either do not enable fast inference of high resolution novel views due to slow volume rendering, or are limited to interpolation of close input views, even in simpler settings with a single central object, where 360-degree generalization is possible. In this work, we combine a regression-based approach with a generative model, moving towards both of these capabilities within the same method, trained purely on readily available real video data. The core of our method are variational 3D Gaussians, a representation that efficiently encodes varying uncertainty within a latent space consisting of 3D feature Gaussians. From these Gaussians, specific instances can be sampled and rendered via efficient Gaussian splatting and a fast, generative decoder network. We show that latentSplat outperforms previous works in reconstruction quality and generalization, while being fast and scalable to high-resolution data.

A Survey on Long Video Generation: Challenges, Methods, and Prospects

图片

Video generation is a rapidly advancing research area, garnering significant attention due to its broad range of applications. One critical aspect of this field is the generation of long-duration videos, which presents unique challenges and opportunities. This paper presents the first survey of recent advancements in long video generation and summarises them into two key paradigms: divide and conquer temporal autoregressive. We delve into the common models employed in each paradigm, including aspects of network design and conditioning techniques. Furthermore, we offer a comprehensive overview and classification of the datasets and evaluation metrics which are crucial for advancing long video generation research. Concluding with a summary of existing studies, we also discuss the emerging challenges and future directions in this dynamic field. We hope that this survey will serve as an essential reference for researchers and practitioners in the realm of long video generation.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值