leetcode 974. 和可被 K 整除的子数组(优质解法)

文章介绍了一种使用Java编程实现的算法,通过计算数组的前缀和并利用哈希表记录每个前缀和对k取模的结果,来确定有多少子数组的和能被k整除。特别提到处理数组中负数的方法和哈希表初始值设置的细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码:
 

class Solution {
    public int subarraysDivByK(int[] nums, int k) {
        HashMap<Integer,Integer> hashMap=new HashMap();
        hashMap.put(0,1);

        int count=0;    //记录子数组的个数
        int last=0; //前一个下标的前缀和
        int now=0;  //当前下标的前缀和

        for(int i=0;i<nums.length;i++){
            now=last+nums[i];
            int r=(now%k+k)%k;
            count+=hashMap.getOrDefault(r,0);
            hashMap.put(r,hashMap.getOrDefault(r,0)+1);
            last=now;
        }
        return count;
    }
}

题解:

        涉及到子数组的问题,我们一般采用滑动窗口或者前缀和来解决,滑动窗口适合解决数组中只有正数的题,而前缀和适合解决关于子数组之和的题,本题要判断哪些子数组的和能够被 k 整除,所以适合使用前缀和来解决

        在解题之前,我们要先说明一个定理:同余定理,当(a - b)% c = n (整数) ,就能够推出 a % c = b % c ,这个定理是我们解题的要点,通过下图来说明解题的过程:

        sum 是前缀和数组,如上图所示,x 是以 i 为尾符合条件的子数组之和,可以推出:sum[ i ] - sum[ j ] = x ,以及 x % k = 0 ,得到 (sum[ i ] - sum[ j ])% k = 0 ;根据同余定理,推得:sum[ i ] % k = sum[ j ] % k 

        j 是位于 0 ~ i -1 区间中的下标,也就是说在 0 ~ i -1 区间中,找到多少个符合上述条件的前缀和,就知道以 i 下标为尾,符合条件的子数组有多少

        所以我们的思路就是用一个哈希表记录在 i 下标之前所有下标的前缀和 % k 的值对应的个数,以 sum[ i ] % k 为 key,个数为 value,从 0 下标开始遍历数组,在遍历到 i 下标时,我们已经知道了 i -1 下标的前缀和,i 下标的前缀和 sum[ i ] = sum[ i -1 ] +nums[ i ] ,通过 sum[ i ] % k 得到要在哈希表中寻找的 sum[ j ] % k 的值,在哈希表中  sum[ i ] % k 对应的值有多少个,就代表以 i 下标为尾,符合条件的子数组有多少个。

        以该方法遍历所有的下标,便能得到所有符合条件的子数组的个数。

        要注意一个细节,因为数组中存在负数,所以 sum[ i ] 可能为负数,在 java 中,负数 % 正数得到的是负数,为了去除负数的影响,所以在取模时不能直接用  sum[ i ] % k ,而是应该用式子 ( sum[ i ] % k + k)% k

        还有一个细节,当哈希表初始化的时候要直接加上 key = 0,value = 1 的数据,因为不加上的话,就无法记录 nums[ i ] % k = 0 (符合条件的子数组只有 nums[ i ] 这一个数据)这种情况了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小林想被监督学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值