1.概念
高斯分布
图像滤波之高斯滤波介绍
图像处理算法|高斯滤波
高斯滤波(Gaussian filter)包含很多种,包括低通、高通、带通等,在图像上说的高斯滤波通常是指的高斯模糊(Gaussian Blur),是一种高斯低通滤波。通常这个算法也可以用来模糊图像,提供模糊滤镜。也可以用来过滤自然界的高斯白噪声。
高斯分布(正态分布)是一个常见的连续概率分布,正态分布的数学期望值或期望值 μ \mu μ等于位置参数,决定了分布的位置,其方差 σ 2 \sigma^2 σ2的开平方或者标准差 σ \sigma σ等于尺度参数,决定了分布的幅度。正态分布的概率密度函数曲线呈钟形,所以又被称为钟形曲线。我们常说的标准正态分布是位置参数 μ = 0 , 方差 σ 2 = 1 \mu=0,方差\sigma^2=1 μ=0,方差σ2=1的正态分布。
若随机变量 X X X服从一个位置参数为 μ 、方差为 σ 2 \mu、方差为\sigma^2 μ、方差为σ2的正态分布,可以记为 X N ( μ , σ 2 ) X~N(\mu,\sigma^2) X N(μ,σ2),其概率密度函数为:
g ( x ) = 1 2 π σ e ( − ( x − μ ) 2 2 σ 2 ) (1) g(x)=\frac{1} {\sqrt{2\pi} \sigma }e^{(-\frac{
{(x-\mu)}^{2} }{2\sigma^{2}})}\tag{1} g(x)=2πσ1e(−2σ2(x−μ)2)<