Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 54798 | Accepted: 24552 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN)
be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence
(1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
题意:给n个数,求最大上升子序列 裸题。
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while (sc.hasNext()) { int n = sc.nextInt(); int arr[] = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = sc.nextInt(); } int len = 0; int g[] = new int[n + 1]; g[0]=Integer.MIN_VALUE; for (int i = 1; i <= arr.length; i++) { if (g[len] < arr[i - 1]) { len = len + 1; g[len] = arr[i - 1]; } g[ef(arr[i-1],g,1,len)]=arr[i-1]; } System.out.println(len); } } public static int ef(int arr, int g[], int start, int end) { while (start < end) { int mix = (start + end) >> 1; if (g[mix] > arr) { end=mix; }else { start=mix+1; } } return start; } }