OpenCV2简单的特征匹配

本文介绍了一种使用SURF算法进行图像特征匹配的方法,并通过OpenCV2实现了特征检测、描述符提取及匹配的过程。该文详细展示了如何从两张图片中提取关键点并计算其描述符,进而利用暴力匹配算法完成特征匹配。

特征的匹配大致可以分为3个步骤:

  1. 特征的提取
  2. 计算特征向量
  3. 特征匹配

对于3个步骤,在OpenCV2中都进行了封装。所有的特征提取方法都实现FeatureDetector接口,DescriptorExtractor接口则封装了对特征向量(特征描述符)的提取,而所有特征向量的匹配都继承了DescriptorMatcher接口。

surf

int main()
{
    const string imgName1 = "x://image//01.jpg";
    const string imgName2 = "x://image//02.jpg";

    Mat img1 = imread(imgName1);
    Mat img2 = imread(imgName2);

    if (!img1.data || !img2.data)
        return -1;

    //step1: Detect the keypoints using SURF Detector
    int minHessian = 400;

    SurfFeatureDetector detector(minHessian);

    vector<KeyPoint> keypoints1, keypoints2;

    detector.detect(img1, keypoints1);
    detector.detect(img2, keypoints2);

    //step2: Calculate descriptors (feature vectors)
    SurfDescriptorExtractor extractor;
    Mat descriptors1, descriptors2;
    extractor.compute(img1, keypoints1, descriptors1);
    extractor.compute(img2, keypoints2, descriptors2);

    //step3:Matching descriptor vectors with a brute force matcher
    BFMatcher matcher(NORM_L2);
    vector<DMatch> matches;
    matcher.match(descriptors1, descriptors2,matches);

    //Draw matches
    Mat imgMatches;
    drawMatches(img1, keypoints1, img2, keypoints2, matches, imgMatches);

    namedWindow("Matches");
    imshow("Matches", imgMatches);

    waitKey();

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值