Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists
have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228
) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
先AB的和做表,再计算CD的和,在表中二分查找对应的数,节约空间CD和没必要做表,由于这题求的是组合方式,不能去重,用的是upper_bound和lower_bound求元素的上下标,可得元素个数
#include <iostream>
#include <stdio.h>
#include<algorithm>
using namespace std;
int a[4001],b[4001],c[4001],d[4001],s1[16000005];
int main()
{
int n,i,j,x,t;
unsigned long long y;
scanf("%d",&n);
x=1,y=0;
for(i=0;i<n;i++){
scanf("%d %d %d %d",&a[i],&b[i],&c[i],&d[i]);
}
for(i=0;i<n;i++){
for(j=0;j<n;j++){
s1[x]=a[i]+b[j];
x++;
}
}
sort(s1+1,s1+x);
for(i=0;i<n;i++){
for(j=0;j<n;j++){
t=c[i]+d[j];
t=0-t;
y+=upper_bound(s1+1,s1+x,t)-lower_bound(s1+1,s1+x,t);
}
}
cout<<y<<endl;
return 0;
}