大模型本地部署 Llama 3.1:Ollama、OpenWeb UI 和 Spring AI 的综合指南(附教程)

本文介绍如何使用 Ollama 在本地部署 Llama 3.1:8B 模型,并通过 OpenWeb UI 和 Spring AI 来增强模型交互体验和简化 API 的调用过程。

在这里插入图片描述

Ollama

Ollama 是一个开源的大语言模型服务工具,旨在简化大模型的本地部署和运行过程。用户只需要输入一行命令(如: ollama run llama3.1 ),即可在本地硬件环境中部署和使用大语言模型。Ollama 还提供了 REST API 接口,下文中会介绍如何使用 Spring AI 集成 Ollama,实现与大模型 API 接口的交互。

Ollama 支持下载 Llama、Gemma、qwen 和 glm4 等多种主流大语言模型和代码语言模型,我们可以在 官网 查看 Ollama 支持的所有模型及其相关信息和使用命令。 本机运行 7B 参数量的模型至少需要 8GB 内存,运行 13B 参数量的模型至少需要 16GB 内存,运行 33B 参数量的模型至少需要 32GB 内存。

模型参数大小使用命令
Llama 3.18B4.7GBollama run llama3.1
Llama 3.170B40GBollama run llama3.1:70b
Llama 3.1405B231GBollama run llama3.1:405b
Gemma 29B5.5GBollama run gemma2
Gemma 227B16GBollama run gemma2:27b
qwen27B4.4GBollama run qwen2
qwen272B41GBollama run qwen2:72b
glm49B5.5GBollama run glm4

下载

访问 Ollama 官网,选择操作系统,然后点击 download 按钮进行下载。操作系统要求 MacOS 11 和 Windows 10 及以上版本。下载完成后的 Ollama 其实是一个命令行工具,我们可以直接在终端中使用 Ollama。(执行 ollama --help 可查看 Ollama 提供的的命令)

在这里插入图片描述

部署 Llama 3.1

在终端中执行命令 ollama run llama3.1 ,即可下载 Llama3.1:8B 模型。模型下载完成后,会自动启动大模型,进入命令行交互模式,直接输入指令,就可以和模型进行对话了。

在这里插入图片描述

通过 Ollama,我们轻松的实现了本地大模型的部署和命令行式的交互,但是为了更好的使用大模型,以及对大模型进行管理和配置等方面的需求,就需要借助 Ollama 社区中一些强大的工具了,其中代表性的工具之一是 OpenWeb UI(之前称为 Ollama WebUI)。

OpenWeb UI

OpenWeb UI 是一个功能丰富且易于使用的大模型管理工具,它为用户提供了一个直观的图形化界面,以及广泛的功能和灵活的配置选项。

  • 方便部署:使用 Docker 实现简单快捷的部署。
  • 用户友好的页面:国际化多语言支持,提供多种主题样式,响应式设计,模型参数、Prompt 等便捷配置。
  • 功能丰富:本地 RAG 支持,Web 浏览功能(可以在对话中访问网站),语音交互等。
  • API 支持:支持 OpenAI API 和其他兼容 API。
  • 多模型支持:支持同时管理和操作多个大语言模型。

下载

部署 OpenWeb UI 需要使用 Docker 环境,我本机的 Docker 版本是 24.0.2。OpenWeb UI 提供了集成 Ollama 的部署方式, 因为 Ollama 已经下载到我本机上了,所以只需要执行以下命令即可完成部署。

sh
 代码解读
复制代码
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

容器启动成功后,可以访问 3000 端口,查看页面。首次登陆需要先填写邮箱和密码注册账号。登陆进来后,可以看到,OpenWeb UI 已经自动加载到了我们本地部署的 Llama3.1 模型。

在这里插入图片描述

在模型编辑页面,我们可以修改模型的配置参数和 Prompt 等信息,并利用 Document 和 Tools 等工具来增强模型的能力和使用体验。

在这里插入图片描述

Spring AI

Spring AI 是 Spring 生态里人工智能方向的应用框架,它提供了与各种大语言模型交互的高级抽象接口,极大地简化了Java 人工智能应用程序的开发过程,让 Java 开发者也能够开发 AI 应用。

接下来将详细介绍 Spring AI 的使用流程,以及如何调用 Ollama 的 API 接口,与我们本地的 Llama 3.1 进行交互。

集成 Ollama

  1. 创建一个新的 Spring Boot 项目,版本要求 Spring Boot 3 + JDK 17。
  2. 引入 Spring AI + Ollama 依赖。
xml
 代码解读
复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.3.1</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.cleaner</groupId>
    <artifactId>culture-ai</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>Cleaner-ai</name>
    <description>culture-ai</description>
    <properties>
        <java.version>17</java.version>
        <spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version>
    </properties>
    <dependencies>
        <!-- ollama -->
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>
    <dependencyManagement>
        <dependencies>
        <!-- spring ai -->
            <dependency>
                <groupId>org.springframework.ai</groupId>
                <artifactId>spring-ai-bom</artifactId>
                <version>${spring-ai.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>


    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>
    <repositories>
        <!-- spring ai -->
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <releases>
                <enabled>false</enabled>
            </releases>
        </repository>
    </repositories>


</project>
  1. 编写 application.yaml 配置文件,添加 Ollama 的相关配置。
yaml
 代码解读
复制代码
server:
  port: 8888
spring:
  application:
    name: Cleaner-AI
  ai:
    ollama:
      # ollama API Server 地址
      base-url: http://localhost:11434
      chat:
        enabled: true
        # 使用的模型名称
        model:
          llama3.1:8b
        options:
          temperature: 0.7
  1. 编写接口。
java
 代码解读
复制代码
package com.cleaner.ai.controller;

import jakarta.annotation.Resource;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;


@RestController
@RequestMapping("/ollama")
public class OllamaController {


    @Resource
    private OllamaChatModel ollamaChatModel;


    /**
     * 流式对话
     *
     * @param message 用户指令
     * @return
     */
    @GetMapping("/streamChat")
    public Flux<ChatResponse> generateStream(@RequestParam("message") String message) {
        message = "请使用中文简体回答:" + message;
        Prompt prompt = new Prompt(new UserMessage(message));
        return ollamaChatModel.stream(prompt);
    }

    /**
     * 普通对话
     * @param message   用户指令
     * @return
     */
    @GetMapping("/chat")
    public String generate(@RequestParam("message") String message) {
        message = "请使用中文简体回答:" + message;
        Prompt prompt = new Prompt(new UserMessage(message));
        ChatResponse chatResponse = ollamaChatModel.call(prompt);
        String content = chatResponse.getResult().getOutput().getContent();
        System.out.println("content = " + content);
        return chatResponse.toString();
    }
}
  1. 调用接口,可以看到 API 接口调用成功。(8B 模型生成的回答内容还是比较有限)

在这里插入图片描述

总结

本地部署的大模型可以脱离网络离线使用,但是要达到实际使用的要求,还需要对模型进行细致化的配置,当然部署模型的参数量越大,使用效果会更好,但也要考虑本机电脑的配置限制。对于学习了解大模型及其相关的技术知识而言,在条件允许的情况下,本机部署确实是一个不错的选择。

大模型算是目前当之无愧最火的一个方向了,算是新时代的风口!有小伙伴觉得,作为新领域、新方向人才需求必然相当大,与之相应的人才缺乏、人才竞争自然也会更少,那转行去做大模型是不是一个更好的选择呢?是不是更好就业呢?是不是就暂时能抵抗35岁中年危机呢?

答案当然是这样,大模型必然是新风口!

那如何学习大模型 ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。但是具体到个人,只能说是:

最先掌握AI的人,将会比较晚掌握AI的人有竞争优势。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

但现在很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习路线完善出来!

在这里插入图片描述

在这个版本当中:

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型路线+学习教程已经给大家整理并打包分享出来, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全咨料,放心领取)👈

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源

在这里插入图片描述

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码免费领取

👉优快云大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全资料,放心领取)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值