大模型时代,前端必须了解一下LangChain应用开发框架

AI大模型时代已经开始显露出颠覆传统开发范式的趋势,新的应用开发模式正在逐渐显现。LangChain是一个可以用Javascript来进行开发的大模型应用开发框架,它本质上也提供了一种用大模型来进行应用开发的成熟的技术路线/框架。本期节目详细讲解了这个成熟的技术路线是怎么利用大模型来进行应用的。

什么是LangChain?

LangChain本身是一个开源开发框架,目前提供Python和Js两种版本,它以大模型作为其核心依赖之一,以让实现应用目标更便捷

LangChain的核心理念:

  • 数据感知:将语言模型与其他数据源连接在一起
  • 主动性:允许语言模型与其环境进行交互
  • 链性:应用模块/组件之间以链的形式组合在一起

LangChain框架本身实现了很多组件

LangChain的诞生,实际上出现了一种架构,提供了一种利用GPT进行应用开发的成熟技术路线,这种架构的核心思想就是Chain(链)

Chain的思路,对实现某种流程非常有帮助,而很多企业应用,都是流程式的应用。Chain的概念的本质,就是一种处理流程模型,也就是把要做成功一件事,应该按照什么流程才能成功进行了抽象。它比某种具体的模型层次更高,不同的业务模型都可以借助相同的Chain实现目标,Chain是对流程范式的抽象。Chain也有多种,比如串行链、并行链、路由链。

它背后的思想其实也是我们做事的方法,就是我把一个复杂的大目标,拆分成多个阶段的任务,不断拆分子任务,通过按照顺序完成小任务之后,不断积累,最终完成整个目标

LangChain应用的模块/要素

  • Chains,链

    • Executors,执行器
  • Model I/O,模型

    • Prompt,提示

      • PromptTemplate
      • Example Selectors
    • Chat Models

    • LLMs

    • Output parsers

  • Retrieval,数据检索

    • Document loaders,文档加载
    • Document transformers,文档转化
    • Text embedding models,文本嵌入模型
    • Vector Stores,向量存储器
    • Retrievers,检索器
    • Indexing,索引
  • Agents,代理

    • Tools, Toolkits
  • Memory,内存,

    • Chat Message,聊天记录

LangChain应用架构

LangChain的应用方向

RAG(Retrieval Augmented Generation,检索增强生成),基于LangChain+检索来实现内容生成的应用技术

  • RAG Search
  • 企业知识库
  • 垂直行业信息咨询
  • 智能聊天机器人(客服)
  • 摘要

Agents,reasoning engines 推理引擎,基于 LLMs 的理解任务、拆解任务、执行任务的集合,换一个理解就是基于大模型的自动化,核心点在于:1. 通过大模型来理解任务、拆分任务和执行任务的方式,把大模型作为该目标的“打工人”;2. 可以通过执行器(Executor)反复调用工具(Tool)API完成任务目标,也就是为“打工人”提供生产资料

  • 角色扮演:法律助手、订票助手、行业专家
  • 数据处理:数据整理、分析、报表制作、报告制作、告警
  • 编程、程序制作、网站开发,测试、调试、自动修复bug
  • 电影制作
  • 行业调研、商业决策

本质上,RAG其实是Agents的一种简化特例,即Agents的理解、拆解部分可按照RAG的架构实现

LangChain有哪些应用产品

  • AutoGP
  • BabyAGI

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值