LangChain Agent(代理)技术分析与实践

想象一下,您的公司可以使用强大的 AI 工具,该工具可以处理大量数据并提取重要结论、识别关键信息并有效地总结它。这些功能可以显着提高员工的工作效率,使他们能够专注于工作中最有价值的方面,而不是耗时的数据处理。在这种情况下,检索增强生成 (RAG) 开辟了新的视角。RAG 允许将 AI 模型与公司的特定内部数据集成,不仅可以进行处理,还可以对这些知识进行智能解释和利用。在本文中,我们将探讨如何实现这一点。
image.png

一、检索增强定义

RAG 是一种技术,它允许通过从大型文档数据库中实时检索信息来扩展预训练语言模型的知识。

用于查询机器学习模型的基本提示架构如下所示:
image.png

在这种情况下,我们向机器学习模型询问波兰首都的情况。这是常识,我们的模型对答案没有问题。

二、深度使用检索增强

想更深入地了解这个简单的例子吗?比方说,我们想要一个机器学习模型,可以回答有关我们从未出版过的 300 页原始书《我的故事》情节的问题,该书的唯一来源是我们私人笔记本电脑上的.pdf文件。因此,模型不可能在训练期间接触到这本书,也不可能在其他地方找到有关它的任何信息。

如果我们向学习模型询问这个故事,模型无法回答。这是它的样子:
image.png

在这种情况下,检索增强生成 (RAG) 就派上用场了。我们可以通过向提示添加上下文信息来简单地扩展机器学习模型的知识。

从理论上讲,它如下所示:
image.png

从理论上讲,它会起作用。该模型会收到我们的查询以及整本书,因此它现在知道了故事并可以回答我们的查询。但是,此解决方案存在实际问题。

我们可以在一个提示下使用的令牌数量是有限的。例如,对于 ChatGPT-4,此限制为 8192 个代币;即使是 GPT-4 Turbo,限制也是 128,000 个代币。

假设我们书中的一页平均有 500 个单词。300 页乘以 500 字等于整本书的 150,000 字。我们应该记住,使用的令牌数量由提示查询、提示上下文和机器学习模型的答案组成。
image.png

仅上下文就相当于 150,000 个令牌。通过添加提示查询和机器学习模型的答案,总数将更高。即使可以发送这样的提示,也只是浪费资源和金钱。我们不需要本书的整个上下文来回答我们的问题。

很明显,我们需要将我们的书分成几块,对于提示的上下文,只附加那些与我们的问题相关的块。将文本分成块是一项简单的任务,但是我们如何确定哪些部分是获得查询答案所必需的呢?

在这里,将文本表示为数字向量(称为嵌入)的技术派上了用场。在另一篇博文中,您可以了解有关嵌入工作原理的更多详细信息。

现在,只要理解嵌入是一种将文本转换为数字向量的技术就足够了,这些数字向量保留了转换后句子的含义。根据句子的含义,这些向量位于向量空间中的特定位置。所以,现在我们知道,在运行我们的提示之前,我们必须首先准备数据(在我们的例子中是书),方法是将其分成块,使用嵌入技术将它们转换为数字向量,并将它们保存在向量数据库中。

此过程如下所示:
image.png

我们已经准备好了我们的数据,以便我们可以很容易地准确地找到书中对我们的查询有用的部分。

有了这些知识和准备好的数据,让我们再次开始从机器学习模型中获取答案的过程。下图描述了在此过程中执行的所有步骤。
image.png

小节

本节我们学习了检索增强,我们知道了什么是检索增强,我们为什么需要检索增强以及检索增强构建思路,后面章节我们会专门整理出来检索增强服务的构建过程,大家敬请期待吧。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,用户想了解AI AgentLangChain的区别联系,以及如何集成或共同使用。首先,我需要回顾一下已有的引用内容。引用[1]提到LangChain是构建AI代理的框架,提供工具和平台;引用[2]强调了解AI Agent框架的重要性;引用[3]则具体说明了LangChain中的模块应用。 首先,我应该明确两者的基本定义。AI Agent是能够自主行动、感知环境并做出决策的智能体,而LangChain是一个具体的框架,用来帮助构建和部署这些Agent。用户可能需要知道它们各自的功能,以及如何配合使用。 接下来,区别方面,AI Agent是概念性的,指代智能体本身,而LangChain是工具,提供具体的实现手段。联系方面,LangChain作为框架,支持开发AI Agent,提供模块化组件如工具包、记忆管理等,帮助Agent更好地运行。 关于集成和使用,可能需要提到LangChain的各个组件,比如如何利用其工具包扩展Agent的功能,或者通过记忆模块处理上下文。同时,用户可能关心实际应用中的步骤,比如加载数据、集成工具等,引用[3]中的模块可以作为例子。 需要确保回答结构清晰,分点说明区别、联系和集成方法。还要注意使用正确的LaTeX格式,比如行内公式用$...$,独立公式用$$...$$,但在这个问题中可能涉及公式较少,不过如果有技术术语或代码示例,要正确应用格式。 最后,生成相关问题时,要考虑用户可能进一步想知道如何优化、具体案例或性能分析等。比如如何设计高效AgentLangChain的组件应用案例,或者两者的优势互补场景。 检查是否有遗漏,比如是否涵盖了用户所有疑问点,是否引用了正确的来源,以及是否符合格式要求。确认语言口语化,避免使用专业术语过多,同时保持准确。</think>### AI AgentLangChain的区别、联系及协同方法 #### 一、核心区别 1. **定义范畴不同** - **AI Agent**:指能够自主感知环境、决策并执行任务的智能代理,例如聊天机器人或自动化数据分析工具[^2]。 - **LangChain**:是用于构建和优化AI Agent的开发框架,提供工具链(如记忆管理、外部工具集成)和标准化流程[^1]。 2. **技术定位差异** - AI Agent是目标产物,例如实现特定业务逻辑的智能系统; - LangChain是基础设施,通过模块化组件(如`Toolkits`、`Memory`)加速Agent开发[^1]。 #### 二、核心联系 1. **LangChain赋能AI Agent** LangChain通过以下方式增强Agent能力: - **上下文管理**:通过`Memory`模块记录交互历史,例如存储用户对话以实现连续问答; - **工具扩展**:集成外部API(如数据库查询工具),使Agent能执行更多操作[^3]。 例如,一个基于LangChain的客服Agent可通过以下公式动态选择工具: $$ \text{Action} = \arg\max_{a \in A} Q(s,a) $$ 其中$Q(s,a)$表示在状态$s$下选择动作$a$的效用值[^1]。 2. **协同工作流程** 典型集成步骤如下: ```python from langchain.agents import initialize_agent from langchain.tools import APITool # 步骤1:加载工具 tools = [APITool(name="天气查询", endpoint="...")] # 步骤2:构建Agent agent = initialize_agent( tools, llm_model, agent_type="react" ) # 步骤3:执行任务 response = agent.run("北京明天适合户外活动吗?") ``` 此过程通过LangChain的`initialize_agent`方法将自然语言理解(LLM工具能力结合。 #### 三、最佳实践建议 1. **开发阶段** - 使用LangChain的`Chain`模块串联多个工具调用,例如先执行数据检索再进行逻辑推理; - 通过`AgentExecutor`控制交互轮次,避免无限循环。 2. **优化方向** - 为工具调用添加优先级权重:$w_i = \frac{1}{1 + e^{-u_i}}$,其中$u_i$为工具使用频率; - 使用`Embedding`技术优化长期记忆存储效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值