前言
机器学习 作为人工智能领域的核心组成,是计算机程序学习数据经验以优化自身算法,并产生相应的“智能化的”建议与决策的过程。
一个经典的机器学习的定义是:
A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
1 机器学习概论
机器学习是关于计算机基于数据分布,学习构建出概率统计模型,并运用模型对数据进行分析与预测的方法。按照学习数据分布的方式的不同,主要可以分为监督学习和非监督学习:

1.1 监督学习
从有标注的数据(x为变量特征空间, y为标签)中,通过选择的模型及确定的学习策略,再用合适算法计算后学习到最优模型,并用模型预测的过程。
按照模型预测结果Y的取值有限或者无限的,可再进一步分为分类模型或者回归模型;

1.2 非监督学习:
从无标注的数据(x为变量特征空间),通过选择的模型及确定的学习策略,再用合适算法计算后学习到最优模型,并用模型发现数据的统计规律或者内在结构。
按照应用场景,可以分为聚类,降维和关联分析等模型。

2 机器学习建模流程

2.1 明确业务问题
明确业务问题是机器学习的先决条件,这里需要抽象出现实业务问题的解决方案:需要学习什么样的数据作为输入,目标是得到什么样的模型做决策作为输出。
(如:一个简单的新闻分类问题的场景,就是学习已有的新闻及其类别标签数据,得到一个文本分类模型,通过模型对每天新的新闻做类别预测,以归类到每个新闻频道。)

本文是Python机器学习的入门指南,涵盖了机器学习的基础概念、建模流程,强调了数据选择、特征工程的重要性,并介绍了数据预处理、特征提取的方法。通过Python实现,帮助初学者理解机器学习的基本步骤。
最低0.47元/天 解锁文章
569

被折叠的 条评论
为什么被折叠?



