凌晨一点,突发剧烈头痛,视力也开始模糊。在这种紧急情况下,使用通用AI助手寻求建议,往往只能得到“请及时就医”这样正确但无用的回答。用户真正需要的,是具备初步症状识别、风险评估和就医指引能力的专业助手。
这正是当前通用大模型在医疗场景中的典型短板:
- 缺乏专业医学知识体系,无法进行症状关联分析
- 回答过于保守,难以提供具针对性的分级建议
- 无法识别症状组合背后的潜在疾病类型差异
现在,通过LLaMA-Factory Online平台,我们只需要2小时,就能基于CareGPT和Qwen3-8B模型,系统性地构建一个真正“懂症状、能判断”的智能医疗助手。实际效果对比如下:
用户提问:“我突然剧烈头痛,视力模糊,可能是什么原因?
通用模型回答虽然结构完整,但存在明显不足:建议过于保守,仅笼统地建议“观察症状”和“及时就医”,缺乏具体的风险评估和紧急情况指引,对急性症状的响应不够充分。
微调后的医疗助手回答展现出明显的改进,回答涵盖了更全面的病因分析,从眼部问题到颅内状况,从血压因素到偏头痛,提供了更具参考价值的医学信息。虽然仍有优化空间,但已经展现出从“通用回复”到“专业解答”的明显进步。

这种具备症状初步分析、风险评估和明确就医指引的专业回应,正是通过CareGPT医疗语料与Qwen3-8B的高效微调实现的。在接下来的内容中,我将完整演示如何通过LLaMA Factory Online平台,在2小时内完成从数据准备、模型微调到效果验证的全流程。
配置概览说明

资源消耗预计
使用推荐资源(H800*4)进行微调时微调过程总时长约2h16min。
具体操作步骤
步骤一:数据准备
- 下载数据集。数据集下载完成后,需上传至文件管理。具体操作,可参考SFTP上传下载完成数据集上传。
- 登录官网,下载ChatMed_Consult_Dataset数据集。
- 登录官网,下载HuatuoGPT2-SFT-GPT4-140K数据集。

- 数据格式转换。
LLaMA Factory作为主流的大语言模型微调框架,对医疗问诊类数据有明确的格式要求(需包含instruction、input、output核心字段,支持多轮对话的history字段可选)。针对ChatMed_Consult_Dataset数据集原有的 “query-response” 二元结构,需通过字段映射与格式重构,将其转换为LLaMA Factory兼容的数据格式。数据格式转换的具体步骤如下:
a. 进入LLaMA-Factory Online平台,单击“控制台”,进入控制台后单击左侧导航栏的“实例空间”,然后在页面单击“开始微调”。

b. 在弹出的页面选择“CPU”,核数选择“2核”,然后单击“启动”。

c. 实例启动后,单击[VSCode处理专属数据]页签,进入VSCode编辑页面。您也可以根据需要打开JupyterLab处理数据,本示例指导您通过VSCode处理数据。
d. 在VSCode页面左侧user-data/datasets目录下(如图①)新建一个.py后缀的文件(如图②),然后复制以下命令至文件中(如图③)。
import json
import pandas as pd
import jsonlines
from typing import List, Dict
def chatmed_to_llamafactory(
input_path: str,
output_path: str,
instruction: str = "
你是专业的医疗咨询助手,请根据用户的医疗问诊需求,提供准确、易懂的疾病解答、治疗建议与日常注意事项,回答需符合医学常识,同时提示用户最终需咨询专业医生确认诊断。"
) -> None:
raw_data: List[Dict] = []
with jsonlines.open(input_path, "r") as f:
for line in f:
raw_data.append(line)
llamafactory_data: List[Dict] = []
for idx, item in enumerate(raw_data):
try:
if "query" not in item or "response" not in item:
print(f"
跳过第{idx+1}条数据:缺失query或response字段")
continue
converted_item = {
"instruction": instruction,
"input": item["query"].strip(),
"output": item["response"].strip(),
"history": []
}
llamafactory_data.append(converted_item)
except Exception as e:
print(f"
处理第{idx+1}条数据时出错:{str(e)},已跳过")
continue
with open(output_path, "w", encoding="utf-8") as f:
json.dump(llamafactory_data, f, ensure_ascii=False, indent=2)
print(f"
转换完成!原始数据共{len(raw_data)}条,有效转换{len(llamafactory_data)}条,输出路径:{output_path}")
if __name__ == "__main__":
INPUT_FILE = "./ChatMed_Consult-v0.3.json"
OUTPUT_FILE = "./datasets/multi-med.json"
chatmed_to_llamafactory(
input_path=INPUT_FILE,
output_path=OUTPUT_FILE,
)

e. VSCode页面,新建一个终端,依次执行以下命令,进行数据格式转换(如图①和②)。
conda activate /opt/conda/envs/lf
python testshuju.py
💡提示
testshuju.py为本示例新建的文件,请根据您的实际情况进行替换。
回显信息如图③所示,说明数据格式转换成功,且转换后的数据存放在/datasets/multi-med.json中,即原数据集文件ChatMed_Consult_Dataset经格式转换后生成新的数据集文件multi-med。

- 数据集检测。
a. 返回LLaMA-Factory Online控制台,单击左侧导航栏的“文件管理”。
b. 单击目标数据集右侧“操作”列的"数据集检测",检测数据集。如下图所示,若“数据集格式检测”结果显示“符合”,则表示数据集符合格式要求。

步骤二:模型微调
-
进入LLaMA-Factory Online平台,单击“控制台”,进入控制台后单击左侧导航栏的“模型微调”进入页面。
-
选择模型和数据集,进行参数配置。
-
本实践使用平台内置的Qwen3-8B作为基础模型(如图①),数据集为ChatMed_Consult_Dataset(multi-med)和HuatuoGPT2-SFT-GPT4-140K(如图②)。
-
训练配置:选择“专家微调”(如图③);“训练轮数”配置为“2”,“单CPU批处理大小”配置为“24”(如图④)。
-
分布式配置:打开“DeepSpeed”开关(如图⑤)。
-
资源配置:推荐卡数为4卡(如图⑥)。
-
选择价格模式:本实践选择“极速尊享”(如图⑦),不同模式的计费模式参考官网说明。
-
开始训练:单击“开始训练”,开始模型训练。

💡提示
配置模型与数据集后,系统将根据所需资源及其相关参数,动态预估任务运行时长及微调费用,您可在页面底部查看预估结果。
- 通过任务中心查看任务状态。 在左侧边栏选择“任务中心”,在“模型微调”页面即可看到刚刚提交的任务。

单击任务框,可查看任务的详细信息、超参数、训练追踪和日志。

- 任务完成后,模型自动保存在"文件管理->模型->output"文件夹中。可在"任务中心->基本信息->模型成果"处查看保存路径。

步骤三:模型评估
-
单击页面左侧导航栏的“模型评估”,进行评估训练配置。
-
微调模型选择上一步骤微调后的模型(如图①),评估数据集为ChatMed_Consult_Dataset(multi-med)和HuatuoGPT2-SFT-GPT4-140K(如图②)。然后配置如下参数(如图③):
-
单GPU批处理大小:设置为32。
-
截断长度:设置为2048。
-
最大生成长度:设置为1024。
其他参数设置为默认即可。

💡提示
配置模型与数据集后,系统将根据所需资源及其相关参数,动态预估任务运行时长及微调费用,您可在页面底部查看预估结果。
- 可以在“任务中心->模型评估”下看到评估任务的运行状态。

4.单击“创建中”右侧图标,进入任务基本信息查看页面。用户可查看评估任务的基本信息、日志以及评估结果。
步骤四:模型对话
1.单击页面左侧导航栏“模型对话”,进入模型对话页面。
2.在微调模型处选择目标模型名称(如图①),单击右上角“开始对话”(如图②),在弹出的对话框单击“立即对话”。

3.在右侧配置栏的“System Prompt”处输入提示词(如图①),在输入框中输入问题(如图②),单击发送;在对话框中查看对话详情(如图③)。

本次基于Qwen3-8B模型,采用LoRA方法在专业医疗数据集上的微调实践表明,该技术方案在保持模型通用能力的同时,显著提升了医疗问答的专业性和实用性。从技术演进角度看,微调后的模型与医疗系统深度融合将释放更大价值。
这种**“领域微调+系统集成”**的技术路径,为AI在医疗等专业场景的落地提供了经过验证的解决方案。LLaMA-Factory Online平台为领域适配提供了高效的工程化路径,这种轻量化微调方案兼具效率与实用性,值得在更多专业场景中推广验证。
想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享!
👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI:
1. 100+本大模型方向电子书

2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

- 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
- 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
- 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
- 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

- 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
- 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
- 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
- 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析:

2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:

三、路线必明: AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

L5阶段:专题集丨特训篇 【录播课】

四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

被折叠的 条评论
为什么被折叠?



