RAG系统中答案无关的片段对LLMs生成结果有何影响?

RAG(检索增强生成)通过检索系统找到用户问题相关的信息片段,利用大模型综合生成一个答案,极大解决了大模型幻觉、信息更新不及时等问题,已经成为了大模型落地的重要手段。

但在检索过程中,往往会检索到与问题极度相似、但又不包含答案或包含干扰答案的片段,这些答案无关片段对大模型生成答案有何影响呢?

今天正好刷到一篇相关文章,带给大家《How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?》

Paper: https://arxiv.org/abs/2404.03302
Github: https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information

在这里插入图片描述

先放相关结论,后面补充相关细节。

  • 与常见语义无关的答案无关片段相比,LLMs更容易受到高度语义相关的答案无关片段的影响;
  • 随着答案无关片段的增加,LLMs更容易分心,识别正确信息的能力降低;
  • LLMs对答案无关片段的的识别能力随着问题格式的不同有所不同,自由式问答>是非性问答>多项选择式问答;
  • 系统提示词中增加“忽略无关片段”等相关内容,对LLMs的识别能力有提升,但较小;
  • 存在高度语义相关的答案无关片段时,COT或者ICL会导致LLMs过度思考,识别能力变差。

数据&片段构造

将答案无关片段,分成三类:

  • 无关:与问题主题无关但相似性得分高的段落
  • 部分相关:不仅在相似性度量上得分高,而且与问题的主题部分内容重叠
  • 相关:不仅在相似性度量上得分高,而且与问题的主题内容重叠,但不包含正确答案。

在这里插入图片描述

数据构造:

  • 无关:通过检索器直接检索Top10的段落;
  • 部分相关:从检索Top10的段落中选择一个包含subj,但缺少obj的段落,作为前半段;然后找到一个包含错误答案obj’的片段作为后半段;
  • 相关:与“部分相关”相比,“相关”片段与问题高度语义相关,但并不包含正确答案,主要涉及系误导性联类型、共同特征类型和虚构轶事类型。

相关样例如下图所示,图片

通过Contriever model计算不同片段相似度得分,相关和部分相关与问题的相似度甚至比真实片段更高,说明数据构造有效。

图片

评价指标:

  • 误表述比率(Misrepresentation Ratio,MR):LLMs因受到答案无关信息影响而改变正确回答内容的比例,用于衡量LLMs被无关信息误导的倾向;
  • 不确定比率(Uncertainty Ratio,UR):LLMs因受到答案无关信息影响而在回答中表述“不确定”的比例,用于衡量LLMs对干扰后生成答案的信心程度。

为了方便评测,采用多项选择题的形式进行LLMs评估,将“正确答案”、“错误答案”以及“不确定”作为选择供LLMs选择。

在这里插入图片描述

结论实验

评估了LLMs在面对三个不同语义相关性级别的答案无关片段时的表现,如下表所示,随着片段的相关性增高,不同模型的效果均有所下降,对于干扰后生成的答案的信心更足。闭源模型的效果远好于开源模型

在这里插入图片描述

PS:开源模型只做了Llama2-7B,感觉应该补充补充~

随着片段个数的不断增加,LLMs分心更严重,如下表所示,随着答案无关片段的数据增加,更愿意选择无关答案。

在这里插入图片描述

为了方便评估,选择多项选择的形式来对LLMs进行分析。但其他形式的问法表现如何?如下表所示,自由问答形式的问题受答案无关片段影响最小、其次是是否类型,影响最大的是多项选择式问题。

图片

PS:对于自由式问题由于没有约束,答案较为散乱,不易评估,由采用了GPT3.5进行了答案对齐操作,人工抽检300条,准确率在97%,认为可靠。

忽略式Prompt对结果有微弱的改善,COT、忽略式Prompt+ICL对结果有害,效果变得更差。

在这里插入图片描述

写在最后

一个蛮有趣的实验报告,探索检索片段对RAG系统带来的额外影响。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值