近年来,大型语言模型在许多领域得到了快速发展和广泛应用。作为一个经典的机器学习任务,时间序列预测最近通过LLMs得到了提升。然而,在这一领域中,关于LLMs的偏好还存在研究空缺。本文通过将LLMs与传统模型进行比较,发现了LLMs在时间序列预测中的许多特性。例如,我们的研究显示LLMs擅长预测具有明确模式和趋势的时间序列,但面对缺乏周期性的数据集时则遇到挑战。我们通过设计提示要求LLMs告知数据集的周期来解释我们的发现。此外,还研究了输入策略,发现结合外部知识和采用自然语言释义对LLMs在时间序列预测性能方面产生了积极影响。总体而言,本研究为在不同条件下LLMs在时间序列预测中的优势和局限性提供了洞察。
论文题目:
Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities
论文链接:
https://arxiv.org/abs/2402.10835
一、我们要回答的三个问题
1. LLMs在时间序列预测中对输入时间序列有何偏好。 为了回答这个问题,我们对真实和合成的数据集进行了实验。我们的观察揭示了LLMs在趋势或季节性强度较高的时间序列上表现更好。为了进一步辨别LLMs对输入数据特定部分的偏好,我们设计了涉及输入序列系统排列的反事实实验。我们发现LLMs对靠近输出的输入序列段非常敏感。
2. 为什么LLMs能在趋势或季节性强度较高的数据集上预测得很好? 为了解决这个问题,我们设计了需要LLMs告知数据集周期的提示。通过实验,我们让大型语言模型多次告知数据集的周期并取中位数。我们发现大型语言模型可以准确地指出数据集的周期性。这可以解释为什么大型语言模型能够很好地预测具有高趋势或季节性强度的数据集,因为它们已经学习了这类知识。
3. 鉴于这些发现,我们的重点在于如何利用这些洞察来进一步提高模型性能。 为了解决这个问题,我们提出了两种简单的技术来提升模型性能:纳入外部人类知识和将数值序列转换为自然语言对应物。纳入补充信息使大型语言模型能够更有效地把握时间序列数据的周期性特征,而不仅仅是强调时间序列的尾部。将数值数据转换为自然语言格式增强了模型的理解和推理能力,也是一种有益的方法。这两种方法都提高了模型性能,并有助于我们理解LLMs在时间序列预测中的应用。
二、一些基础设定
我们将LLMs作为zero shot 学子者用于时间序列预测,通过将数值视为文本序列来处理。LLMs在时间序列预测中的成功很大程度上取决于数据的正确预处理和处理。我们遵循了他们的方法,这个过程涉及几个关键步骤。在使用LLMs进行时间序列预测的预处理阶段,数值被转换为字符串,这是一个关键步骤,显著影响了模型的理解和数据处理。
例如,一个序列如0.123, 1.23, 12.3, 123.0被重新格式化为"1 2, 1 2 3, 1 2 3 0, 1 2 3 0 0",引入空格分隔数字和逗号以界定时间步骤,而省略小数点以节省令牌空间。令牌化同样至关重要,塑造了模型的模式识别能力。不同于传统方法如字节对编码(BPE),可能会破坏数值连贯性,通过空格分隔数字确保了单独的令牌化,增强了模式辨识。 此外,还采用了重新缩放技术,通过调整值使特定百分位数对齐到1,以高效利用令牌和管理大输入,从而使模型能够接触到不同位数的数字,并支持生成更大的值,这证明了数据准备在利用LLMs进行时间序列分析中的微妙而关键的性质。
时间序列预测在时间序列预测的背景下,主要目标是基于前 K 步观察到的值预测接下来 H 步的值,数学表达式为:
受到现实世界场景中可解释性要求的激励,时间序列通常可以通过加法模型分解为趋势分量、季节分量和残差分量。趋势分量捕获数据中隐藏的长期变化,如线性或指数模式。季节分量捕获数据中的重复变化,残差分量捕获在去除趋势和季节分量后数据中剩余的变化。这种分解提供了一种量化时间序列属性的方法。
三、实验的发现
1. 在计算了皮尔逊相关系数(PCC)之后,我们观察到强度和模型性能之间存在几乎强烈的相关性,这表明当输入时间序列具有更高的趋势和季节性强度时,LLMs的表现更好。 值得注意的是,与GPT-3.5-turbo-instruct相比,GPT-4取得了更高的PCC。这可能归因于GPT-4训练期间的人类反馈,因为个体可能更能意识到季节性和趋势数据。有趣的是,与原始测试序列相比,GPT-4生成的输出的QS(质量分数)有所增加。这表明GPT-4倾向于预测具有高季节性强度的时间序列,这可能为进一步的研究提供洞察。在多周期时间序列的背景下,随着周期数的增加,模型性能下降。这表明LLMs可能难以识别此类数据集中固有的多个周期,这在现实中很常见。
2. 为了探索LLMs在具有较高趋势或季节性强度的数据集上预测良好的现象,我们设计了实验来验证这一现象。我们设计提示,让LLMs在每次序列预测后输出预测值。 实验的目标模型是GPT-3.5-Turbo,我们的提示的主要作用是进行incontext learning并要求输出周期。我们选择了八个时间序列数据集,如AirPassengersDataset,经过十次预测后统计周期值,并将这十个结果的中位数与真实周期进行比较。结果显示在表3中。根据结果,我们发现大型语言模型在一定程度上可以确定数据集的周期性。尽管每次时间序列预测的波动较大,但在AirPassenger、Sunspots和Wooly数据集上的预测相对准确,其他数据集上的预测值也接近我们的真实周期值。我们推测LLMs能够很好地预测具有高趋势或季节性强度的数据集,因为它们已经掌握了一些关于场景和数据集内容的知识。
3. 为了提高大型语言模型(LLMs)在时间序列预测方面的性能和稳定性,我们引入了一种新方法。这部分的核心思想是利用大型语言模型预训练获得的知识来帮助预测。 我们将在提示中提供有关当前数据集的一些基本信息,如数据集的名称,这一过程不涉及数据泄露(不会告诉大型语言模型关于周期或预测值等信息)。
主要发现 在外部知识增强方面,GPT-4通常在MSE、MAE和MAPE上表现优于GPT-3.5,尤其是在AirPassengers、AusBeer等数据集上。Llama-2在某些数据集(例如Wooly、ETTh1、ETTm2)上的MSE和MAE指标上显著优于GPT-3.5和GPT-4,表明它能更准确地捕捉数据特征。R平方值在某些数据集上如ETTh1、ETTm2和Turkey Power展示,所有模型都能提供相对准确的预测,R平方值接近1。
Illustration From IconScout By Delesign Graphics
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
