OpenAI:搞 Agent 时,你要注意这些

背景

这两天参加了 OpenAI 的一些活动。有一部分是讨论 Agent/智能体系统在落地时,遇到的各种问题,以及一些可行的实践。这里我带来了一些笔记。

基于下面的这篇论文,地址是:

https://openai.com/research/practices-for-governing-agentic-ai-systems

图片


关于 Agent

Agent 是一种 AI 的应用方式,但随着语境的迁移,它慢慢从「AI 应用」里剥离了出来。不准确来说,这里的感觉,就像是 H5 从 html5 中剥离了出来。

按当前的语境,我们会把 ChatGPT 就是看成一种 AI 应用,它能理解你的问题并给出回答。而会把 GPTs 这种订制后的、能调用外部功能的、能够自己处理复杂任务的产品,叫做 Agent。

Agent 和 AI应用(如ChatGPT)之间的区别和联系主要体现在“代理性”(agenticness)这的程度上。如果一个AI系统,能够在没有直接人类监督的情况下运作,其自主性越高,我们称之为代理性越强。这是一个连续体,不是非黑即白的判断,而是根据它在特定环境中的表现来评估其代理性的程度。

在这种定义下,正统 Agent 不仅能回答问题,还能自己决定做什么,它能够通过生成文本来“思考”,然后做出一些操作,甚至能创造出更多的 AI 帮手来帮帮忙,就比如下面这个图。

图片

但我们发现,尽管 Agent 看起来很美好,但在实际落地的场景中,也是困难重重,风险多多,出现了问题,责任划分也很麻烦。比如这里:如果我希望让某个 Agent 帮我微信收款,但它给别人展示的是付款码,那么这里谁背锅?

也是因为这些问题,就有了本次的话题:「从实践的角度出发,落地 Agent 有哪些注意点」。共包含 7 个主要点:执行效果评估、危险行为界定、默认行为确定、推理透明展示、Agent 行为监控、Agent 作恶追责、危险事故叫停。


Agent 落地难点

由于会上的 PPT 不便分享,我便在自己吸收后,重新制作了一份 PPT,安心食用

01

执行效果评估

图片

在商业环境中,确保任何工具的可靠性是基本要求。

然而,AI Agent 的复杂性在于其工作场景和任务的不确定性。例如,一个在模拟环境中表现优异的自动驾驶车辆,可能因现实世界中不可预测的变量(如天气变化和道路条件)而表现不稳定。

我们尚缺乏有效的方法,来准确评估 AI Agent 在实际环境中的性能。

02

危险行为界定

图片

AI Agent 在执行高风险操作之前需要获得用户的明确批准。例如,在金融领域,AI 执行大额转账前必须得到用户同意。

但需要注意,频繁的审批请求可能导致用户出现审批疲劳,从而可能无视风险盲目批准操作,这既削弱了批准机制的效果,也可能增加操作风险。

03

默认行为确定

图片

当 AI Agent 遇到执行错误或不确定的情形时,是要有一个默认行为的。例如,如果一个客服机器人在不确定用户需求时,其默认行为是请求更多信息以避免错误操作。

然而,频繁的请求可能会影响用户体验,因此在保障系统安全性与保持用户体验之间需要找到平衡。

04

推理透明展示

图片

为了保证 AI Agent 决策的透明性,系统需要向用户清晰展示其推理过程。举例来说,一个健康咨询机器人应详细解释其提出特定医疗建议的逻辑。

但如果推理过程太复杂,普通用户可能难以理解,这就需要在确保透明性和易理解性之间找到平衡。

05

Agent 行为监控

在这里插入图片描述

假设一个 AI 系统用于监控仓库库存,如果监控系统误报,误认为某项商品缺货,进而不断的进货,那么可能导致库存的严重积压,并造成极大损失。

于是,我们思考:是否需要另一个 Agent 来监控这个 Agent?成本账怎么算?

06

Agent 作恶追责

图片

考虑一个匿名发布内容的 AI Agent,如果其发布了违规内容,要追踪到具体负责的人或机构可能极其困难。这种情况下,建立一个能够确保责任可追溯的系统尤为关键,同时还需要平衡隐私保护和责任追究的需求。

07

严重事故叫停

图片

想象一个用于自动化工厂管理的 AI Agent,在系统检测到严重故障需要立即停机时,不仅需要停止主控系统,还要同步关闭所有从属设备和流程。如何设计一个能够迅速且全面响应的紧急停止机制,以防止故障扩散或造成更大损失,是一项技术和策略上的复杂挑战。


如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
对代码进行标准化以及压缩。减少不必要的计算及冗余,压缩内存及代码量,前提是不影响程序稳定以及精度:import os import sys import re import json import gc import time import tempfile import concurrent.futures import difflib import threading import traceback import numpy as np import librosa import torch import psutil import requests import hashlib import shutil from typing import List, Dict, Tuple, Optional, Set from threading import Lock, Semaphore, RLock from datetime import datetime from pydub import AudioSegment from pydub.silence import split_on_silence from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from transformers import AutoModelForSequenceClassification, AutoTokenizer from torch.utils.data import TensorDataset, DataLoader from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QPushButton, QLabel, QLineEdit, QTextEdit, QFileDialog, QProgressBar, QGroupBox, QMessageBox, QListWidget, QSplitter, QTabWidget, QTableWidget, QTableWidgetItem, QHeaderView, QAction, QMenu, QToolBar, QCheckBox, QComboBox, QSpinBox, QDialog, QDialogButtonBox, QStatusBar) from PyQt5.QtCore import QThread, pyqtSignal, Qt, QTimer, QSize from PyQt5.QtGui import QFont, QTextCursor, QColor, QIcon # ====================== 资源监控器 ====================== class ResourceMonitor: """统一资源监控器(增强版)""" def __init__(self): self.gpu_available = torch.cuda.is_available() def memory_percent(self) -> Dict[str, float]: """获取内存使用百分比,同返回CPU和GPU信息""" try: result = { "cpu": psutil.virtual_memory().percent } if self.gpu_available: allocated = torch.cuda.memory_allocated() / (1024 ** 3) total = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) result["gpu"] = (allocated / total) * 100 if total > 0 else 0 return result except Exception as e: print(f"获取内存使用百分比失败: {str(e)}") return {"cpu": 0, "gpu": 0} # ====================== 方言配置中心(优化版) ====================== class DialectConfig: """集中管理方言配置,便于维护和扩展(带缓存)""" # 标准关键词 STANDARD_KEYWORDS = { "opening": ["您好", "很高兴为您服务", "请问有什么可以帮您"], "closing": ["感谢来电", "祝您生活愉快", "再见"], "forbidden": ["不知道", "没办法", "你投诉吧", "随便你"] } # 贵州方言关键词 GUIZHOU_KEYWORDS = { "opening": ["麻烦您喽", "请问哪样", "有咋个可以帮您", "多谢喽"], "closing": ["归一喽", "麻烦您喽", "再见喽", "慢走喽"], "forbidden": ["不成", "没得法", "随便你喽", "你投诉吧喽"] } # 方言到标准表达的映射(扩展更多贵州方言) DIALECT_MAPPING = { "恼火得很": "非常生气", "鬼火戳": "很愤怒", "不成": "无法完成", "没得": "没有", "哪样嘛": "做什么呢", "归一喽": "完成了", "咋个": "怎么", "克哪点": "去哪里", "麻烦您喽": "麻烦您了", "多谢喽": "多谢了", "憨包": "傻瓜", "归一": "结束", "板扎": "很好", "鬼火冒": "非常生气", "背": "倒霉", "吃豁皮": "占便宜" } # 类属性缓存 _combined_keywords = None _compiled_opening = None _compiled_closing = None _hotwords = None _dialect_trie = None # 使用Trie树替换正则表达式 class TrieNode: """Trie树节点类""" def __init__(self): self.children = {} self.is_end = False self.value = "" @classmethod def _build_dialect_trie(cls): """构建方言Trie树""" root = cls.TrieNode() # 按长度降序添加关键词 for dialect, standard in sorted(cls.DIALECT_MAPPING.items(), key=lambda x: len(x[0]), reverse=True): node = root for char in dialect: if char not in node.children: node.children[char] = cls.TrieNode() node = node.children[char] node.is_end = True node.value = standard return root @classmethod def get_combined_keywords(cls) -> Dict[str, List[str]]: """获取合并后的关键词集(带缓存)""" if cls._combined_keywords is None: cls._combined_keywords = { "opening": cls.STANDARD_KEYWORDS["opening"] + cls.GUIZHOU_KEYWORDS["opening"], "closing": cls.STANDARD_KEYWORDS["closing"] + cls.GUIZHOU_KEYWORDS["closing"], "forbidden": cls.STANDARD_KEYWORDS["forbidden"] + cls.GUIZHOU_KEYWORDS["forbidden"] } return cls._combined_keywords @classmethod def get_compiled_opening(cls) -> List[re.Pattern]: """获取预编译的开场关键词正则表达式(带缓存)""" if cls._compiled_opening is None: keywords = cls.get_combined_keywords()["opening"] cls._compiled_opening = [re.compile(re.escape(kw)) for kw in keywords] return cls._compiled_opening @classmethod def get_compiled_closing(cls) -> List[re.Pattern]: """获取预编译的结束关键词正则表达式(带缓存)""" if cls._compiled_closing is None: keywords = cls.get_combined_keywords()["closing"] cls._compiled_closing = [re.compile(re.escape(kw)) for kw in keywords] return cls._compiled_closing @classmethod def get_asr_hotwords(cls) -> List[str]: """获取ASR热词列表(带缓存)""" if cls._hotwords is None: combined = cls.get_combined_keywords() cls._hotwords = sorted(set( combined["opening"] + combined["closing"] )) return cls._hotwords @classmethod def preprocess_text(cls, texts: List[str]) -> List[str]: """将方言文本转换为标准表达(使用Trie树优化)""" if cls._dialect_trie is None: cls._dialect_trie = cls._build_dialect_trie() processed_texts = [] for text in texts: # 使用Trie树进行高效替换 processed = [] i = 0 n = len(text) while i < n: node = cls._dialect_trie j = i found = False # 查找最长匹配 while j < n and text[j] in node.children: node = node.children[text[j]] j += 1 if node.is_end: processed.append(node.value) i = j found = True break if not found: processed.append(text[i]) i += 1 processed_texts.append(''.join(processed)) return processed_texts # ====================== 系统配置管理器 ====================== class ConfigManager: """管理应用程序配置""" _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance._init_config() return cls._instance def _init_config(self): """初始化默认配置""" self.config = { "model_paths": { "asr": "./models/iic-speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn", "sentiment": "./models/IDEA-CCNL-Erlangshen-Roberta-110M-Sentiment" }, "sample_rate": 16000, "silence_thresh": -40, "min_silence_len": 1000, "max_concurrent": 1, "dialect_config": "guizhou", "max_audio_duration": 3600 # 最大音频长(秒) } self.load_config() def load_config(self): """从文件加载配置""" try: if os.path.exists("config.json"): with open("config.json", "r") as f: self.config.update(json.load(f)) except: pass def save_config(self): """保存配置到文件""" try: with open("config.json", "w") as f: json.dump(self.config, f, indent=2) except: pass def get(self, key: str, default=None): """获取配置值""" return self.config.get(key, default) def set(self, key: str, value): """设置配置值""" self.config[key] = value self.save_config() # ====================== 音频处理工具(优化版) ====================== class AudioProcessor: """处理音频转换和特征提取(避免重复加载)""" SUPPORTED_FORMATS = ('.mp3', '.wav', '.amr', '.m4a') @staticmethod def convert_to_wav(input_path: str, temp_dir: str) -> Optional[List[str]]: """将音频转换为WAV格式(在静音处分割)""" try: os.makedirs(temp_dir, exist_ok=True) # 检查文件格式 if not any(input_path.lower().endswith(ext) for ext in AudioProcessor.SUPPORTED_FORMATS): raise ValueError(f"不支持的音频格式: {os.path.splitext(input_path)[1]}") if input_path.lower().endswith('.wav'): return [input_path] # 已经是WAV格式 # 检查ffmpeg是否可用 try: AudioSegment.converter = "ffmpeg" # 显式指定ffmpeg audio = AudioSegment.from_file(input_path) except FileNotFoundError: print("错误: 未找到ffmpeg,请安装并添加到环境变量") return None # 检查音频长是否超过限制 max_duration = ConfigManager().get("max_audio_duration", 3600) * 1000 # 毫秒 if len(audio) > max_duration: return AudioProcessor._split_long_audio(audio, input_path, temp_dir) else: return AudioProcessor._convert_single_audio(audio, input_path, temp_dir) except Exception as e: print(f"格式转换失败: {str(e)}") return None @staticmethod def _split_long_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]: """分割长音频文件""" wav_paths = [] # 在静音处分割音频 chunks = split_on_silence( audio, min_silence_len=ConfigManager().get("min_silence_len", 1000), silence_thresh=ConfigManager().get("silence_thresh", -40), keep_silence=500 ) # 合并小片段,避免分段过多 merged_chunks = [] current_chunk = AudioSegment.empty() for chunk in chunks: if len(current_chunk) + len(chunk) < 5 * 60 * 1000: # 5分钟 current_chunk += chunk else: if len(current_chunk) > 0: merged_chunks.append(current_chunk) current_chunk = chunk if len(current_chunk) > 0: merged_chunks.append(current_chunk) # 导出分段音频 sample_rate = ConfigManager().get("sample_rate", 16000) for i, chunk in enumerate(merged_chunks): chunk = chunk.set_frame_rate(sample_rate).set_channels(1) chunk_path = os.path.join( temp_dir, f"{os.path.splitext(os.path.basename(input_path))[0]}_part{i + 1}.wav" ) chunk.export(chunk_path, format="wav") wav_paths.append(chunk_path) return wav_paths @staticmethod def _convert_single_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]: """转换单个短音频文件""" sample_rate = ConfigManager().get("sample_rate", 16000) audio = audio.set_frame_rate(sample_rate).set_channels(1) wav_path = os.path.join(temp_dir, os.path.splitext(os.path.basename(input_path))[0] + ".wav") audio.export(wav_path, format="wav") return [wav_path] @staticmethod def extract_features_from_audio(y: np.ndarray, sr: int) -> Dict[str, float]: """从音频数据中提取特征(流式处理优化)""" try: duration = librosa.get_duration(y=y, sr=sr) segment_length = 60 # 60秒分段 total_segments = max(1, int(np.ceil(duration / segment_length))) syllable_rates = [] volume_stabilities = [] total_samples = len(y) samples_per_segment = int(segment_length * sr) # 流式处理每个分段 for i in range(total_segments): start = i * samples_per_segment end = min((i + 1) * samples_per_segment, total_samples) y_segment = y[start:end] if len(y_segment) == 0: continue # 语速计算(使用VAD检测语音段) intervals = librosa.effects.split(y_segment, top_db=20) speech_samples = sum(end - start for start, end in intervals) speech_duration = speech_samples / sr if speech_duration > 0.1: syllable_rate = len(intervals) / speech_duration else: syllable_rate = 0 syllable_rates.append(syllable_rate) # 音量稳定性(使用RMS能量) rms = librosa.feature.rms(y=y_segment, frame_length=2048, hop_length=512)[0] if len(rms) > 0 and np.mean(rms) > 0: volume_stability = np.std(rms) / np.mean(rms) volume_stabilities.append(volume_stability) # 计算加权平均值(按长加权) valid_syllable = [r for r in syllable_rates if r > 0] valid_volume = [v for v in volume_stabilities if v > 0] return { "duration": duration, "syllable_rate": round(np.mean(valid_syllable) if valid_syllable else 0, 2), "volume_stability": round(np.mean(valid_volume) if valid_volume else 0, 4) } except Exception as e: print(f"特征提取错误: {str(e)}") return {"duration": 0, "syllable_rate": 0, "volume_stability": 0} # ====================== 模型加载器(优化版) ====================== class ModelLoader: """加载和管理AI模型(使用RLock)""" asr_pipeline = None sentiment_model = None sentiment_tokenizer = None model_lock = RLock() # 使用RLock代替Lock models_loaded = False # 添加模型加载状态标志 @classmethod def load_models(cls): """加载所有模型""" config = ConfigManager() # 加载ASR模型 if not cls.asr_pipeline: with cls.model_lock: if not cls.asr_pipeline: # 双重检查锁定 cls.load_asr_model(config.get("model_paths")["asr"]) # 加载情感分析模型 if not cls.sentiment_model: with cls.model_lock: if not cls.sentiment_model: # 双重检查锁定 cls.load_sentiment_model(config.get("model_paths")["sentiment"]) cls.models_loaded = True @classmethod def reload_models(cls): """重新加载模型(配置变更后)""" with cls.model_lock: cls.asr_pipeline = None cls.sentiment_model = None cls.sentiment_tokenizer = None gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() cls.load_models() @classmethod def load_asr_model(cls, model_path: str): """加载语音识别模型""" try: if not os.path.exists(model_path): raise FileNotFoundError(f"ASR模型路径不存在: {model_path}") asr_kwargs = {} if hasattr(torch, 'quantization'): asr_kwargs['quantize'] = 'int8' print("启用ASR模型量化") cls.asr_pipeline = pipeline( task=Tasks.auto_speech_recognition, model=model_path, device='cuda' if torch.cuda.is_available() else 'cpu', **asr_kwargs ) print("ASR模型加载完成") except Exception as e: print(f"加载ASR模型失败: {str(e)}") raise @classmethod def load_sentiment_model(cls, model_path: str): """加载情感分析模型""" try: if not os.path.exists(model_path): raise FileNotFoundError(f"情感分析模型路径不存在: {model_path}") cls.sentiment_model = AutoModelForSequenceClassification.from_pretrained(model_path) cls.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_path) if torch.cuda.is_available(): cls.sentiment_model = cls.sentiment_model.cuda() print("情感分析模型加载完成") except Exception as e: print(f"加载情感分析模型失败: {str(e)}") raise # ====================== 核心分析线程(优化版) ====================== class AnalysisThread(QThread): progress_updated = pyqtSignal(int, str, str) result_ready = pyqtSignal(dict) finished_all = pyqtSignal() error_occurred = pyqtSignal(str, str) memory_warning = pyqtSignal() resource_cleanup = pyqtSignal() def __init__(self, audio_paths: List[str], temp_dir: str = "temp_wav"): super().__init__() self.audio_paths = audio_paths self.temp_dir = temp_dir self.is_running = True self.current_file = "" self.max_concurrent = min( ConfigManager().get("max_concurrent", 1), self.get_max_concurrent_tasks() ) self.resource_monitor = ResourceMonitor() self.semaphore = Semaphore(self.max_concurrent) os.makedirs(temp_dir, exist_ok=True) def run(self): try: if not ModelLoader.models_loaded: self.error_occurred.emit("模型未加载", "请等待模型加载完成后再开始分析") return self.progress_updated.emit(0, f"最大并行任务数: {self.max_concurrent}", "") # 使用线程池并行处理 with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_concurrent) as executor: # 创建任务 future_to_path = {} for path in self.audio_paths: if not self.is_running: break # 使用信号量控制并发 self.semaphore.acquire() batch_size = self.get_available_batch_size() future = executor.submit(self.analyze_audio, path, batch_size) future_to_path[future] = path future.add_done_callback(lambda f: self.semaphore.release()) # 处理完成的任务 for i, future in enumerate(concurrent.futures.as_completed(future_to_path)): if not self.is_running: break path = future_to_path[future] self.current_file = os.path.basename(path) # 内存检查 if self.check_memory_usage(): self.memory_warning.emit() self.is_running = False break try: result = future.result() if result: self.result_ready.emit(result) # 更新进度 progress = int((i + 1) / len(self.audio_paths) * 100) self.progress_updated.emit( progress, f"完成: {self.current_file} ({i + 1}/{len(self.audio_paths)})", self.current_file ) except Exception as e: result = { "file_name": self.current_file, "status": "error", "error": f"分析失败: {str(e)}" } self.result_ready.emit(result) # 分析完成后 if self.is_running: self.finished_all.emit() except Exception as e: self.error_occurred.emit("系统错误", str(e)) traceback.print_exc() finally: # 确保资源清理 self.resource_cleanup.emit() self.cleanup_resources() def analyze_audio(self, audio_path: str, batch_size: int) -> Dict: """分析单个音频文件(整合所有优化)""" result = { "file_name": os.path.basename(audio_path), "status": "processing" } wav_paths = [] try: # 1. 音频格式转换 wav_paths = AudioProcessor.convert_to_wav(audio_path, self.temp_dir) if not wav_paths: result["error"] = "格式转换失败(请检查ffmpeg是否安装)" result["status"] = "error" return result # 2. 提取音频特征(合并所有分段) audio_features = self._extract_audio_features(wav_paths) result.update(audio_features) result["duration_str"] = self._format_duration(audio_features["duration"]) # 3. 语音识别与处理(使用批处理优化) all_segments, full_text = self._process_asr_segments(wav_paths) # 4. 说话人区分(使用优化后的方法) agent_segments, customer_segments = self.identify_speakers(all_segments) # 5. 生成带说话人标签的文本 labeled_text = self._generate_labeled_text(all_segments, agent_segments, customer_segments) result["asr_text"] = labeled_text.strip() # 6. 文本分析(包含方言预处理) text_analysis = self._analyze_text(agent_segments, customer_segments, batch_size) result.update(text_analysis) # 7. 服务规范检查(使用方言适配的关键词) service_check = self._check_service_rules(agent_segments) result.update(service_check) # 8. 问题解决率(上下文关联) result["issue_resolved"] = self._check_issue_resolution(customer_segments, agent_segments) result["status"] = "success" except Exception as e: result["error"] = f"分析失败: {str(e)}" result["status"] = "error" finally: # 清理临文件(使用优化后的清理方法) self._cleanup_temp_files(wav_paths) # 显式内存清理 self.cleanup_resources() return result def identify_speakers(self, segments: List[Dict]) -> Tuple[List[Dict], List[Dict]]: """区分客服与客户(增强版)""" if not segments: return [], [] # 1. 基于关键词的识别 agent_id = self._identify_by_keywords(segments) # 2. 基于说话模式的识别(如果关键词识别失败) if agent_id is None and len(segments) >= 4: agent_id = self._identify_by_speech_patterns(segments) # 3. 使用说话频率最高的作为客服(最后手段) if agent_id is None: spk_counts = {} for seg in segments: spk_id = seg["spk_id"] spk_counts[spk_id] = spk_counts.get(spk_id, 0) + 1 agent_id = max(spk_counts, key=spk_counts.get) if spk_counts else None if agent_id is None: return [], [] # 使用集合存储agent的spk_id agent_spk_ids = {agent_id} return ( [seg for seg in segments if seg["spk_id"] in agent_spk_ids], [seg for seg in segments if seg["spk_id"] not in agent_spk_ids] ) def _identify_by_keywords(self, segments: List[Dict]) -> Optional[str]: """基于关键词识别客服""" opening_patterns = DialectConfig.get_compiled_opening() closing_patterns = DialectConfig.get_compiled_closing() # 策略1:在前3段中查找开场白关键词 for seg in segments[:3]: text = seg["text"] for pattern in opening_patterns: if pattern.search(text): return seg["spk_id"] # 策略2:在后3段中查找结束语关键词 for seg in reversed(segments[-3:] if len(segments) >= 3 else segments): text = seg["text"] for pattern in closing_patterns: if pattern.search(text): return seg["spk_id"] return None def _identify_by_speech_patterns(self, segments: List[Dict]) -> Optional[str]: """基于说话模式识别客服""" # 分析说话模式特征 speaker_features = {} for seg in segments: spk_id = seg["spk_id"] if spk_id not in speaker_features: speaker_features[spk_id] = { "total_duration": 0.0, "turn_count": 0, "question_count": 0 } features = speaker_features[spk_id] features["total_duration"] += (seg["end"] - seg["start"]) features["turn_count"] += 1 # 检测问题(包含疑问词) if any(q_word in seg["text"] for q_word in ["吗", "呢", "?", "?", "如何", "怎样"]): features["question_count"] += 1 # 客服通常说话间更长、提问更多 if speaker_features: # 计算说话间占比 max_duration = max(f["total_duration"] for f in speaker_features.values()) # 计算提问频率 question_rates = { spk_id: features["question_count"] / features["turn_count"] for spk_id, features in speaker_features.items() } # 综合评分 candidates = [] for spk_id, features in speaker_features.items(): score = ( 0.6 * (features["total_duration"] / max_duration) + 0.4 * question_rates[spk_id] ) candidates.append((spk_id, score)) # 返回得分最高的说话人 return max(candidates, key=lambda x: x[1])[0] return None def _analyze_text(self, agent_segments: List[Dict], customer_segments: List[Dict], batch_size: int) -> Dict: """文本情感分析(优化版:向量化批处理)""" def analyze_speaker(segments: List[Dict], speaker_type: str) -> Dict: if not segments: return { f"{speaker_type}_negative": 0.0, f"{speaker_type}_neutral": 1.0, f"{speaker_type}_positive": 0.0, f"{speaker_type}_emotions": "无" } # 方言预处理 - 使用优化的一次性替换 texts = [seg["text"] for seg in segments] processed_texts = DialectConfig.preprocess_text(texts) # 使用DataLoader进行批处理 with ModelLoader.model_lock: inputs = ModelLoader.sentiment_tokenizer( processed_texts, padding=True, truncation=True, max_length=128, return_tensors="pt" ) # 创建TensorDataset和DataLoader dataset = TensorDataset(inputs['input_ids'], inputs['attention_mask']) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False) device = "cuda" if torch.cuda.is_available() else "cpu" sentiment_dist = [] emotions = [] # 批量处理 for batch in dataloader: input_ids, attention_mask = batch inputs = { 'input_ids': input_ids.to(device), 'attention_mask': attention_mask.to(device) } with torch.no_grad(): outputs = ModelLoader.sentiment_model(**inputs) batch_probs = torch.nn.functional.softmax(outputs.logits, dim=-1) sentiment_dist.append(batch_probs.cpu()) # 情绪识别(批量) emotion_keywords = ["愤怒", "生气", "鬼火", "不耐烦", "哪样嘛", "恼火", "背"] for text in processed_texts: if any(kw in text for kw in emotion_keywords): if any(kw in text for kw in ["愤怒", "生气", "鬼火", "恼火"]): emotions.append("愤怒") elif any(kw in text for kw in ["不耐烦", "哪样嘛"]): emotions.append("不耐烦") elif "背" in text: emotions.append("沮丧") # 合并结果 if sentiment_dist: all_probs = torch.cat(sentiment_dist, dim=0) avg_sentiment = torch.mean(all_probs, dim=0).tolist() else: avg_sentiment = [0.0, 1.0, 0.0] # 默认值 return { f"{speaker_type}_negative": round(avg_sentiment[0], 4), f"{speaker_type}_neutral": round(avg_sentiment[1], 4), f"{speaker_type}_positive": round(avg_sentiment[2], 4), f"{speaker_type}_emotions": ",".join(set(emotions)) if emotions else "无" } return { **analyze_speaker(agent_segments, "agent"), **analyze_speaker(customer_segments, "customer") } # ====================== 辅助方法 ====================== def get_available_batch_size(self) -> int: """根据GPU内存动态调整batch size(考虑并行)""" if not torch.cuda.is_available(): return 4 # CPU默认批次 total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) # GB per_task_mem = total_mem / self.max_concurrent # 修正批次大小逻辑:显存越少,批次越小 if per_task_mem < 2: return 2 elif per_task_mem < 4: return 4 else: return 8 def get_max_concurrent_tasks(self) -> int: """根据系统资源计算最大并行任务数""" if torch.cuda.is_available(): total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) if total_mem < 6: return 1 elif total_mem < 12: return 2 else: return 3 else: # CPU模式下根据核心数设置 return max(1, os.cpu_count() // 2) def check_memory_usage(self) -> bool: try: mem_percent = self.resource_monitor.memory_percent() return mem_percent.get("cpu", 0) > 85 or mem_percent.get("gpu", 0) > 85 except: return False def _extract_audio_features(self, wav_paths: List[str]) -> Dict[str, float]: """提取音频特征(合并所有分段)""" combined_y = np.array([], dtype=np.float32) sr = ConfigManager().get("sample_rate", 16000) for path in wav_paths: y, _ = librosa.load(path, sr=sr) combined_y = np.concatenate((combined_y, y)) return AudioProcessor.extract_features_from_audio(combined_y, sr) def _process_asr_segments(self, wav_paths: List[str]) -> Tuple[List[Dict], str]: """处理ASR分段(批处理优化)""" segments = [] full_text = "" # 分批处理(根据GPU内存动态调整批次大小) batch_size = min(4, len(wav_paths), self.get_available_batch_size()) for i in range(0, len(wav_paths), batch_size): if not self.is_running: break batch_paths = wav_paths[i:i + batch_size] try: # 批处理调用ASR模型 results = ModelLoader.asr_pipeline( batch_paths, hotwords=DialectConfig.get_asr_hotwords(), output_dir=None, batch_size=batch_size ) for result in results: for seg in result[0]["sentences"]: segments.append({ "start": seg["start"], "end": seg["end"], "text": seg["text"], "spk_id": seg.get("spk_id", "0") }) full_text += seg["text"] + " " except Exception as e: print(f"ASR批处理错误: {str(e)}") # 失败回退到单文件处理 for path in batch_paths: try: result = ModelLoader.asr_pipeline( path, hotwords=DialectConfig.get_asr_hotwords(), output_dir=None ) for seg in result[0]["sentences"]: segments.append({ "start": seg["start"], "end": seg["end"], "text": seg["text"], "spk_id": seg.get("spk_id", "0") }) full_text += seg["text"] + " " except: continue return segments, full_text.strip() def _generate_labeled_text(self, all_segments: List[Dict], agent_segments: List[Dict], customer_segments: List[Dict]) -> str: """生成带说话人标签的文本""" agent_spk_id = agent_segments[0]["spk_id"] if agent_segments else None customer_spk_id = customer_segments[0]["spk_id"] if customer_segments else None labeled_text = [] for seg in all_segments: if seg["spk_id"] == agent_spk_id: speaker = "客服" elif seg["spk_id"] == customer_spk_id: speaker = "客户" else: speaker = f"说话人{seg['spk_id']}" labeled_text.append(f"[{speaker}]: {seg['text']}") return "\n".join(labeled_text) def _check_service_rules(self, agent_segments: List[Dict]) -> Dict: """检查服务规范""" forbidden_keywords = DialectConfig.get_combined_keywords()["forbidden"] found_forbidden = [] found_opening = False found_closing = False # 检查开场白(前3段) for seg in agent_segments[:3]: text = seg["text"] if any(kw in text for kw in DialectConfig.get_combined_keywords()["opening"]): found_opening = True break # 检查结束语(后3段) for seg in reversed(agent_segments[-3:] if len(agent_segments) >= 3 else agent_segments): text = seg["text"] if any(kw in text for kw in DialectConfig.get_combined_keywords()["closing"]): found_closing = True break # 检查禁用词 for seg in agent_segments: text = seg["text"] for kw in forbidden_keywords: if kw in text: found_forbidden.append(kw) break return { "opening_found": found_opening, "closing_found": found_closing, "forbidden_words": ", ".join(set(found_forbidden)) if found_forbidden else "无" } def _check_issue_resolution(self, customer_segments: List[Dict], agent_segments: List[Dict]) -> bool: """检查问题是否解决(增强版)""" if not customer_segments or not agent_segments: return False # 提取所有文本 customer_texts = [seg["text"] for seg in customer_segments] agent_texts = [seg["text"] for seg in agent_segments] full_conversation = " ".join(customer_texts + agent_texts) # 问题解决关键词 resolution_keywords = ["解决", "处理", "完成", "已", "好了", "可以了", "没问题"] thank_keywords = ["谢谢", "感谢", "多谢"] negative_keywords = ["没解决", "不行", "不对", "还是", "仍然", "再"] # 检查是否有负面词汇 has_negative = any(kw in full_conversation for kw in negative_keywords) if has_negative: return False # 检查客户最后是否表达感谢 last_customer_text = customer_segments[-1]["text"] if any(kw in last_customer_text for kw in thank_keywords): return True # 检查是否有解决关键词 if any(kw in full_conversation for kw in resolution_keywords): return True # 检查客服是否确认解决 for agent_text in reversed(agent_texts[-3:]): # 检查最后3段 if any(kw in agent_text for kw in resolution_keywords): return True return False def _cleanup_temp_files(self, paths: List[str]): """清理临文件(增强兼容性)""" def safe_remove(path): """安全删除文件(多平台兼容)""" try: if os.path.exists(path): if sys.platform == 'win32': # Windows系统需要特殊处理 os.chmod(path, 0o777) # 确保有权限 for _ in range(5): # 最多尝试5次 try: os.remove(path) break except PermissionError: time.sleep(0.2) else: os.remove(path) except Exception: pass # 使用线程池并行删除 with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor: executor.map(safe_remove, paths) # 额外清理:删除超过1小的临文件 now = time.time() for file in os.listdir(self.temp_dir): file_path = os.path.join(self.temp_dir, file) if os.path.isfile(file_path): file_age = now - os.path.getmtime(file_path) if file_age > 3600: # 1小 safe_remove(file_path) def _format_duration(self, seconds: float) -> str: """将秒转换为分秒格式""" minutes, seconds = divmod(int(seconds), 60) hours, minutes = divmod(minutes, 60) return f"{hours:02d}:{minutes:02d}:{seconds:02d}" def cleanup_resources(self): """显式清理资源""" gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() def stop(self): """停止分析""" self.is_running = False # ====================== 模型加载线程 ====================== class ModelLoadThread(QThread): progress_updated = pyqtSignal(int, str) finished = pyqtSignal(bool, str) def run(self): try: # 检查模型路径 config = ConfigManager().get("model_paths") if not os.path.exists(config["asr"]): self.finished.emit(False, "ASR模型路径不存在") return if not os.path.exists(config["sentiment"]): self.finished.emit(False, "情感分析模型路径不存在") return self.progress_updated.emit(20, "加载语音识别模型...") ModelLoader.load_asr_model(config["asr"]) self.progress_updated.emit(60, "加载情感分析模型...") ModelLoader.load_sentiment_model(config["sentiment"]) self.progress_updated.emit(100, "模型加载完成") self.finished.emit(True, "模型加载成功。建议:可通过设置界面修改模型路径") except Exception as e: self.finished.emit(False, f"模型加载失败: {str(e)}。建议:检查模型路径是否正确,或重新下载模型文件") # ====================== GUI主界面 ====================== class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("贵州方言客服质检系统") self.setGeometry(100, 100, 1200, 800) self.setup_ui() self.setup_menu() self.analysis_thread = None self.model_load_thread = None self.temp_dir = "temp_wav" os.makedirs(self.temp_dir, exist_ok=True) self.model_loaded = False def setup_ui(self): """设置用户界面""" # 主布局 main_widget = QWidget() main_layout = QVBoxLayout() main_widget.setLayout(main_layout) self.setCentralWidget(main_widget) # 工具栏 toolbar = QToolBar("主工具栏") toolbar.setIconSize(QSize(24, 24)) self.addToolBar(toolbar) # 添加文件按钮 add_file_action = QAction(QIcon("icons/add.png"), "添加文件", self) add_file_action.triggered.connect(self.add_files) toolbar.addAction(add_file_action) # 开始分析按钮 analyze_action = QAction(QIcon("icons/start.png"), "开始分析", self) analyze_action.triggered.connect(self.start_analysis) toolbar.addAction(analyze_action) # 停止按钮 stop_action = QAction(QIcon("icons/stop.png"), "停止分析", self) stop_action.triggered.connect(self.stop_analysis) toolbar.addAction(stop_action) # 设置按钮 settings_action = QAction(QIcon("icons/settings.png"), "设置", self) settings_action.triggered.connect(self.open_settings) toolbar.addAction(settings_action) # 分割布局 splitter = QSplitter(Qt.Horizontal) main_layout.addWidget(splitter) # 左侧文件列表 left_widget = QWidget() left_layout = QVBoxLayout() left_widget.setLayout(left_layout) file_list_label = QLabel("待分析文件列表") file_list_label.setFont(QFont("Arial", 12, QFont.Bold)) left_layout.addWidget(file_list_label) self.file_list = QListWidget() self.file_list.setSelectionMode(QListWidget.ExtendedSelection) left_layout.addWidget(self.file_list) # 右侧结果区域 right_widget = QWidget() right_layout = QVBoxLayout() right_widget.setLayout(right_layout) # 进度条 progress_label = QLabel("分析进度") progress_label.setFont(QFont("Arial", 12, QFont.Bold)) right_layout.addWidget(progress_label) self.progress_bar = QProgressBar() self.progress_bar.setRange(0, 100) self.progress_bar.setTextVisible(True) right_layout.addWidget(self.progress_bar) # 当前文件标签 self.current_file_label = QLabel("当前文件: 无") right_layout.addWidget(self.current_file_label) # 结果标签页 self.tab_widget = QTabWidget() right_layout.addWidget(self.tab_widget, 1) # 文本结果标签页 text_tab = QWidget() text_layout = QVBoxLayout() text_tab.setLayout(text_layout) self.text_result = QTextEdit() self.text_result.setReadOnly(True) text_layout.addWidget(self.text_result) self.tab_widget.addTab(text_tab, "文本结果") # 详细结果标签页 detail_tab = QWidget() detail_layout = QVBoxLayout() detail_tab.setLayout(detail_layout) self.result_table = QTableWidget() self.result_table.setColumnCount(10) self.result_table.setHorizontalHeaderLabels([ "文件名", "长", "语速", "音量稳定性", "客服情感", "客户情感", "开场白", "结束语", "禁用词", "问题解决" ]) self.result_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) detail_layout.addWidget(self.result_table) self.tab_widget.addTab(detail_tab, "详细结果") # 添加左右部件到分割器 splitter.addWidget(left_widget) splitter.addWidget(right_widget) splitter.setSizes([300, 900]) def setup_menu(self): """设置菜单栏""" menu_bar = self.menuBar() # 文件菜单 file_menu = menu_bar.addMenu("文件") add_file_action = QAction("添加文件", self) add_file_action.triggered.connect(self.add_files) file_menu.addAction(add_file_action) export_action = QAction("导出结果", self) export_action.triggered.connect(self.export_results) file_menu.addAction(export_action) exit_action = QAction("退出", self) exit_action.triggered.connect(self.close) file_menu.addAction(exit_action) # 分析菜单 analysis_menu = menu_bar.addMenu("分析") start_action = QAction("开始分析", self) start_action.triggered.connect(self.start_analysis) analysis_menu.addAction(start_action) stop_action = QAction("停止分析", self) stop_action.triggered.connect(self.stop_analysis) analysis_menu.addAction(stop_action) # 设置菜单 settings_menu = menu_bar.addMenu("设置") config_action = QAction("系统配置", self) config_action.triggered.connect(self.open_settings) settings_menu.addAction(config_action) model_action = QAction("加载模型", self) model_action.triggered.connect(self.load_models) settings_menu.addAction(model_action) def add_files(self): """添加文件到分析列表""" files, _ = QFileDialog.getOpenFileNames( self, "选择音频文件", "", "音频文件 (*.mp3 *.wav *.amr *.m4a)" ) if files: for file in files: self.file_list.addItem(file) def start_analysis(self): """开始分析""" if self.file_list.count() == 0: QMessageBox.warning(self, "警告", "请先添加要分析的音频文件") return if not self.model_loaded: QMessageBox.warning(self, "警告", "模型未加载,请先加载模型") return # 获取文件路径 audio_paths = [self.file_list.item(i).text() for i in range(self.file_list.count())] # 清空结果 self.text_result.clear() self.result_table.setRowCount(0) # 创建分析线程 self.analysis_thread = AnalysisThread(audio_paths, self.temp_dir) # 连接信号 self.analysis_thread.progress_updated.connect(self.update_progress) self.analysis_thread.result_ready.connect(self.handle_result) self.analysis_thread.finished_all.connect(self.analysis_finished) self.analysis_thread.error_occurred.connect(self.show_error) self.analysis_thread.memory_warning.connect(self.handle_memory_warning) self.analysis_thread.resource_cleanup.connect(self.cleanup_resources) # 启动线程 self.analysis_thread.start() def stop_analysis(self): """停止分析""" if self.analysis_thread and self.analysis_thread.isRunning(): self.analysis_thread.stop() self.analysis_thread.wait() QMessageBox.information(self, "信息", "分析已停止") def load_models(self): """加载模型""" if self.model_load_thread and self.model_load_thread.isRunning(): return self.model_load_thread = ModelLoadThread() self.model_load_thread.progress_updated.connect( lambda value, msg: self.progress_bar.setValue(value) ) self.model_load_thread.finished.connect(self.handle_model_load_result) self.model_load_thread.start() def update_progress(self, progress: int, message: str, current_file: str): """更新进度""" self.progress_bar.setValue(progress) self.current_file_label.setText(f"当前文件: {current_file}") def handle_result(self, result: Dict): """处理分析结果""" # 添加到文本结果 self.text_result.append(f"文件: {result['file_name']}") self.text_result.append(f"状态: {result['status']}") if result["status"] == "success": self.text_result.append(f": {result['duration_str']}") self.text_result.append(f"语速: {result['syllable_rate']} 音节/秒") self.text_result.append(f"音量稳定性: {result['volume_stability']}") self.text_result.append(f"客服情感: 负面({result['agent_negative']:.2%}) " f"中性({result['agent_neutral']:.2%}) " f"正面({result['agent_positive']:.2%})") self.text_result.append(f"客服情绪: {result['agent_emotions']}") self.text_result.append(f"客户情感: 负面({result['customer_negative']:.2%}) " f"中性({result['customer_neutral']:.2%}) " f"正面({result['customer_positive']:.2%})") self.text_result.append(f"客户情绪: {result['customer_emotions']}") self.text_result.append(f"开场白: {'有' if result['opening_found'] else '无'}") self.text_result.append(f"结束语: {'有' if result['closing_found'] else '无'}") self.text_result.append(f"禁用词: {result['forbidden_words']}") self.text_result.append(f"问题解决: {'是' if result['issue_resolved'] else '否'}") self.text_result.append("\n=== 对话文本 ===\n") self.text_result.append(result["asr_text"]) self.text_result.append("\n" + "=" * 50 + "\n") # 添加到结果表格 row = self.result_table.rowCount() self.result_table.insertRow(row) self.result_table.setItem(row, 0, QTableWidgetItem(result["file_name"])) self.result_table.setItem(row, 1, QTableWidgetItem(result["duration_str"])) self.result_table.setItem(row, 2, QTableWidgetItem(str(result["syllable_rate"]))) self.result_table.setItem(row, 3, QTableWidgetItem(str(result["volume_stability"]))) self.result_table.setItem(row, 4, QTableWidgetItem( f"负:{result['agent_negative']:.2f} 中:{result['agent_neutral']:.2f} 正:{result['agent_positive']:.2f}" )) self.result_table.setItem(row, 5, QTableWidgetItem( f"负:{result['customer_negative']:.2f} 中:{result['customer_neutral']:.2f} 正:{result['customer_positive']:.2f}" )) self.result_table.setItem(row, 6, QTableWidgetItem("是" if result["opening_found"] else "否")) self.result_table.setItem(row, 7, QTableWidgetItem("是" if result["closing_found"] else "否")) self.result_table.setItem(row, 8, QTableWidgetItem(result["forbidden_words"])) self.result_table.setItem(row, 9, QTableWidgetItem("是" if result["issue_resolved"] else "否")) # 根据结果着色 if not result["opening_found"]: self.result_table.item(row, 6).setBackground(QColor(255, 200, 200)) if not result["closing_found"]: self.result_table.item(row, 7).setBackground(QColor(255, 200, 200)) if result["forbidden_words"] != "无": self.result_table.item(row, 8).setBackground(QColor(255, 200, 200)) if not result["issue_resolved"]: self.result_table.item(row, 9).setBackground(QColor(255, 200, 200)) def analysis_finished(self): """分析完成""" QMessageBox.information(self, "完成", "所有音频分析完成") self.progress_bar.setValue(100) def show_error(self, title: str, message: str): """显示错误信息""" QMessageBox.critical(self, title, message) def handle_memory_warning(self): """处理内存警告""" QMessageBox.warning(self, "内存警告", "内存使用过高,分析已停止。请关闭其他应用程序后重试") def cleanup_resources(self): """清理资源""" gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() def handle_model_load_result(self, success: bool, message: str): """处理模型加载结果""" if success: self.model_loaded = True QMessageBox.information(self, "成功", message) else: QMessageBox.critical(self, "错误", message) def open_settings(self): """打开设置对话框""" settings_dialog = QDialog(self) settings_dialog.setWindowTitle("系统设置") settings_dialog.setFixedSize(500, 400) layout = QVBoxLayout() # ASR模型路径 asr_layout = QHBoxLayout() asr_label = QLabel("ASR模型路径:") asr_line = QLineEdit(ConfigManager().get("model_paths")["asr"]) asr_browse = QPushButton("浏览...") def browse_asr(): path = QFileDialog.getExistingDirectory(self, "选择ASR模型目录") if path: asr_line.setText(path) asr_browse.clicked.connect(browse_asr) asr_layout.addWidget(asr_label) asr_layout.addWidget(asr_line) asr_layout.addWidget(asr_browse) layout.addLayout(asr_layout) # 情感分析模型路径 sentiment_layout = QHBoxLayout() sentiment_label = QLabel("情感模型路径:") sentiment_line = QLineEdit(ConfigManager().get("model_paths")["sentiment"]) sentiment_browse = QPushButton("浏览...") def browse_sentiment(): path = QFileDialog.getExistingDirectory(self, "选择情感模型目录") if path: sentiment_line.setText(path) sentiment_browse.clicked.connect(browse_sentiment) sentiment_layout.addWidget(sentiment_label) sentiment_layout.addWidget(sentiment_line) sentiment_layout.addWidget(sentiment_browse) layout.addLayout(sentiment_layout) # 并发设置 concurrent_layout = QHBoxLayout() concurrent_label = QLabel("最大并发任务:") concurrent_spin = QSpinBox() concurrent_spin.setRange(1, 8) concurrent_spin.setValue(ConfigManager().get("max_concurrent", 1)) concurrent_layout.addWidget(concurrent_label) concurrent_layout.addWidget(concurrent_spin) layout.addLayout(concurrent_layout) # 方言设置 dialect_layout = QHBoxLayout() dialect_label = QLabel("方言设置:") dialect_combo = QComboBox() dialect_combo.addItems(["标准普通话", "贵州方言"]) dialect_combo.setCurrentIndex(1 if ConfigManager().get("dialect_config") == "guizhou" else 0) dialect_layout.addWidget(dialect_label) dialect_layout.addWidget(dialect_combo) layout.addLayout(dialect_layout) # 音频长限制 duration_layout = QHBoxLayout() duration_label = QLabel("最大音频长(秒):") duration_spin = QSpinBox() duration_spin.setRange(60, 86400) # 1分钟到24小 duration_spin.setValue(ConfigManager().get("max_audio_duration", 3600)) duration_layout.addWidget(duration_label) duration_layout.addWidget(duration_spin) layout.addLayout(duration_layout) # 按钮 button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(settings_dialog.accept) button_box.rejected.connect(settings_dialog.reject) layout.addWidget(button_box) settings_dialog.setLayout(layout) if settings_dialog.exec_() == QDialog.Accepted: # 保存设置 ConfigManager().set("model_paths", { "asr": asr_line.text(), "sentiment": sentiment_line.text() }) ConfigManager().set("max_concurrent", concurrent_spin.value()) ConfigManager().set("dialect_config", "guizhou" if dialect_combo.currentIndex() == 1 else "standard") ConfigManager().set("max_audio_duration", duration_spin.value()) # 重新加载模型 ModelLoader.reload_models() def export_results(self): """导出结果""" if self.result_table.rowCount() == 0: QMessageBox.warning(self, "警告", "没有可导出的结果") return path, _ = QFileDialog.getSaveFileName( self, "保存结果", "", "CSV文件 (*.csv)" ) if path: try: with open(path, "w", encoding="utf-8") as f: # 写入表头 headers = [] for col in range(self.result_table.columnCount()): headers.append(self.result_table.horizontalHeaderItem(col).text()) f.write(",".join(headers) + "\n") # 写入数据 for row in range(self.result_table.rowCount()): row_data = [] for col in range(self.result_table.columnCount()): item = self.result_table.item(row, col) row_data.append(item.text() if item else "") f.write(",".join(row_data) + "\n") QMessageBox.information(self, "成功", f"结果已导出到: {path}") except Exception as e: QMessageBox.critical(self, "错误", f"导出失败: {str(e)}") def closeEvent(self, event): """关闭事件处理""" if self.analysis_thread and self.analysis_thread.isRunning(): self.analysis_thread.stop() self.analysis_thread.wait() # 清理临目录(增强兼容性) try: for file in os.listdir(self.temp_dir): file_path = os.path.join(self.temp_dir, file) if os.path.isfile(file_path): # Windows系统可能需要多次尝试 for _ in range(3): try: os.remove(file_path) break except PermissionError: time.sleep(0.1) os.rmdir(self.temp_dir) except: pass event.accept() # ====================== 程序入口 ====================== if __name__ == "__main__": torch.set_num_threads(4) # 限制CPU线程数 app = QApplication(sys.argv) # 设置应用样式 app.setStyle('Fusion') window = MainWindow() window.show() sys.exit(app.exec_())
08-05
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值