出于几个原因,您可能使用人脸模糊来隐藏视频或图像中的人脸。隐私和安全问题是最主要的原因。大多数视频分享平台和视频编辑软件都内置了人脸模糊功能。
您可以使用Python、OpenCV和NumPy库从头创建自己的人脸模糊程序。
1、建立环境
要完成本文的学习,您需要熟悉Python的基础知识,并对NumPy库的使用有一番基本的了解。
打开任何您熟悉的Python IDE。创建一个虚拟环境,用来安装所需的库。创建一个新的Python文件。进入到终端,运行以下命令来安装所需的库。将库作为以空格分隔的列表来传递。
pip install OpenCV-python NumPy
您将使用OpenCV获取并预处理视频输入,使用NumPy处理数组。
一旦您安装了库,等待IDE更新项目骨干部分。更新完成、环境准备就绪后,您就可以开始编码了。
如果你也喜欢编程,想通过学习Python转行、做副业或者提升工作效率,这份【最新全套Python学习资料】 一定对你有用!

2、导入所需的库
首先,导入OpenCV库和NumPy库。这将使您能够调用和使用它们支持的任何函数。导入OpenCV-python作为cv2。
import cv2
import numpy as np
OpenCV-python模块使用名称cv2作为OpenCV社区建立的约定。OpenCV- Python是OpenCV库的Python包装器,用C++编写。
3、获取输入
创建一个变量,并初始化VideoCapture对象。如果您想使用计算机的主摄像头作为输入源,应传递0作为参数。要使用连接到计算机上的外部摄像头,请传递1。要对预先录制的视频执行人脸模糊处理,请改而传递视频的路径。若要使用远程摄像头,传递摄像头的URL,其中含有IP地址和端口号。
cap = cv2.VideoCapture(0)
要对输入执行人脸模糊,您需要这三个函数:
- 对输入进行预处理的函数
- 将模糊输入中的人脸的函数
- 将控制程序流程并显示输出的main函数。
4、视频输入预处理
创建一个输入预处理函数,将输入视频的每一帧作为其输入。初始化CascadeClassifier类,您将用这个类检测人脸。将帧大小调整为640 * 640像素。将调整大小的帧转换成灰度以便处理,最后检测输入中的人脸,并将其与矩形绑定。
def image_preprocess(fame):
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades
+ ‘haarcascade_frontalface_default.xml’)
resized_image = cv2