Faster—RCNN源代码解析之demo.py

本文详细解析Faster R-CNN的demo.py,包括模型选择、分类类型设定、检测结果可视化方法vis_detections、核心的demo()函数以及参数解析函数parse_args。通过主函数调用这些组件,实现对测试样本的物体检测并展示结果。

1、模型选择,以及分类类型:

CLASSES = ('__background__',
           'aeroplane', 'bicycle', 'bird', 'boat',
           'bottle', 'bus', 'car', 'cat', 'chair',
           'cow', 'diningtable', 'dog', 'horse',
           'motorbike', 'person', 'pottedplant',
           'sheep', 'sofa', 'train', 'tvmonitor')

NETS = {'vgg16': ('VGG16',
                  'VGG16_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
                  'ZF_faster_rcnn_final.caffemodel')}

CLASSES后面的是你需要分类目标的名称,NETS后面的是你训练好的模型的名称。

2、vis_detections函数,用来使得检测结果可视化,即在图片中展示出检测结果,包括物体框和类别以及得分。

def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=3.5)
            )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                  fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()

3,demo()函数:
使用训练好的模型对测试样本进行物体探测测试:

def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    #使用你自己的路径时做相应的修改即可
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)

4、parse_args()函数:
没有太大的修改

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                        choices=NETS.keys(), default='vgg16')

    args = parser.parse_args()

    return args

5、主函数:
使用主函数,调用预定义函数得出最终结果:

if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                              NETS[args.demo_net][1])

    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)

    print '\n\nLoaded network {:s}'.format(caffemodel)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _= im_detect(net, im)

    im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
                '001763.jpg', '004545.jpg']
    for im_name in im_names:
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/{}'.format(im_name)
        demo(net, im_name)

    plt.show()
文件: import scrapy from demo1.items import Demo1Item import urllib from scrapy import log # BOSS直聘网站爬虫职位 class DemoSpider(scrapy.Spider): # 爬虫名, 启动爬虫时需要的参数*必填 name = 'demo' # 爬取域范围,允许爬虫在这个域名下进行爬取(可选) allowed_domains = ['zhipin.com'] # 爬虫需要的url start_urls = ['https://www.zhipin.com/c101280600/h_101280600/?query=测试'] def parse(self, response): node_list = response.xpath("//div[@class='job-primary']") # 用来存储所有的item字段 # items = [] for node in node_list: item = Demo1Item() # extract() 将xpath对象转换为Unicode字符串 href = node.xpath("./div[@class='info-primary']//a/@href").extract() job_title = node.xpath("./div[@class='info-primary']//a/div[@class='job-title']/text()").extract() salary = node.xpath("./div[@class='info-primary']//a/span/text()").extract() working_place = node.xpath("./div[@class='info-primary']/p/text()").extract() company_name = node.xpath("./div[@class='info-company']//a/text()").extract() item['href'] = href[0] item['job_title'] = job_title[0] item['sa 报错: C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\python.exe "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\pydevconsole.py" --mode=client --port=55825 import sys; print('Python %s on %s' % (sys.version, sys.platform)) sys.path.extend(['C:\\Users\\xieqianyun\\demo1', 'C:/Users/xieqianyun/demo1']) Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 7.10.0 -- An enhanced Interactive Python. Type '?' for help. PyDev console: using IPython 7.10.0 Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] on win32 runfile('C:/Users/xieqianyun/demo1/demo1/begin.py', wdir='C:/Users/xieqianyun/demo1/demo1') Traceback (most recent call last): File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\IPython\core\interactiveshell.py", line 3319, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-fc5979762143>", line 1, in <module> runfile('C:/Users/xieqianyun/demo1/demo1/begin.py', wdir='C:/Users/xieqianyun/demo1/demo1') File "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/xieqianyun/demo1/demo1/begin.py", line 3, in <module> cmdline.execute('scrapy crawl demo'.split()) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\cmdline.py", line 145, in execute cmd.crawler_process = CrawlerProcess(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 267, in __init__ super(CrawlerProcess, self).__init__(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 145, in __init__ self.spider_loader = _get_spider_loader(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 347, in _get_spider_loader return loader_cls.from_settings(settings.frozencopy()) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 61, in from_settings return cls(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 25, in __init__ self._load_all_spiders() File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 47, in _load_all_spiders for module in walk_modules(name): File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\utils\misc.py", line 73, in walk_modules submod = import_module(fullpath) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 994, in _gcd_import File "<frozen importlib._bootstrap>", line 971, in _find_and_load File "<frozen importlib._bootstrap>", line 955, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 665, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "C:\Users\xieqianyun\demo1\demo1\spiders\demo.py", line 4, in <module> from scrapy import log ImportError: cannot import name 'log'
### 使用 Faster R-CNN 训练自定义数据集上的对象检测模型 为了使用 Faster R-CNN 训练自定义数据集上的对象检测模型,需遵循一系列特定的操作流程来准备环境并调整代码以适应新的数据源。 #### 创建项目结构 建立必要的目录结构对于管理训练过程至关重要。应创建专门用于存储配置文件、权重以及处理后的图像的文件夹[^1]。 ```bash mkdir -p faster_rcnn_project/{data,models,results} ``` #### 获取资源 下载官方发布的 Faster R-CNN 实现版本,并获取预训练的基础网络参数作为初始化起点。这有助于加速收敛速度并提高最终性能表现[^2]。 - **克隆仓库** ```bash git clone https://github.com/bubbliiiing/faster-rcnn-pytorch.git cd faster-rcnn-pytorch ``` - **加载预训练模型** 可通过链接直接下载或利用脚本自动拉取已有的 ImageNet 预训练权值文件。 #### 数据准备工作 将收集到的目标识别样本按照 VOC 或 COCO 的标准格式整理好之后上传至本地服务器。如果原始资料不符合上述任一规范,则需要编写额外工具完成转换工作。 特别注意的是,在标注过程中要确保边界框不会超出图片尺寸范围之外;另外还需编辑 `classes.txt` 来指定新加入类别的名称列表。 #### 修改配置项 针对不同应用场景下的需求差异,可能涉及到对超参设定做出适当改动。比如学习率衰减策略的选择、批量大小设置等都会影响到最后的效果好坏程度。 具体来说就是打开项目的配置文件(通常是 Python 脚本),找到对应位置后依据实际情况填写合适的数值: ```python # example_config.py batch_size = 8 learning_rate = 0.001 num_workers = 4 epochs = 50 ``` #### 编译与调试 由于部分依赖库可能是 C++ 编写的扩展模块,因此有时还需要重新构建整个工程才能正常使用最新版的功能特性。此外建议先执行简单的推理测试验证安装无误后再继续下一步操作。 可以通过如下命令启动 demo 应用来查看效果: ```bash python tools/demo.py --config-file configs/your_custom_model.yaml \ --input input_image.jpg \ --output output_directory/ ``` #### 开始正式训练 当一切就绪以后就可以调用训练接口让机器开始自我优化了。期间应当密切关注日志输出情况以便及时发现潜在问题所在之处。 ```bash python train_net.py --config-file path/to/config_file.yaml \ --eval-only False ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值