Faster—RCNN源代码解析之demo.py

本文详细解析Faster R-CNN的demo.py,包括模型选择、分类类型设定、检测结果可视化方法vis_detections、核心的demo()函数以及参数解析函数parse_args。通过主函数调用这些组件,实现对测试样本的物体检测并展示结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、模型选择,以及分类类型:

CLASSES = ('__background__',
           'aeroplane', 'bicycle', 'bird', 'boat',
           'bottle', 'bus', 'car', 'cat', 'chair',
           'cow', 'diningtable', 'dog', 'horse',
           'motorbike', 'person', 'pottedplant',
           'sheep', 'sofa', 'train', 'tvmonitor')

NETS = {'vgg16': ('VGG16',
                  'VGG16_faster_rcnn_final.caffemodel'),
        'zf': ('ZF',
                  'ZF_faster_rcnn_final.caffemodel')}

CLASSES后面的是你需要分类目标的名称,NETS后面的是你训练好的模型的名称。

2、vis_detections函数,用来使得检测结果可视化,即在图片中展示出检测结果,包括物体框和类别以及得分。

def vis_detections(im, class_name, dets, thresh=0.5):
    """Draw detected bounding boxes."""
    inds = np.where(dets[:, -1] >= thresh)[0]
    if len(inds) == 0:
        return

    im = im[:, :, (2, 1, 0)]
    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(im, aspect='equal')
    for i in inds:
        bbox = dets[i, :4]
        score = dets[i, -1]

        ax.add_patch(
            plt.Rectangle((bbox[0], bbox[1]),
                          bbox[2] - bbox[0],
                          bbox[3] - bbox[1], fill=False,
                          edgecolor='red', linewidth=3.5)
            )
        ax.text(bbox[0], bbox[1] - 2,
                '{:s} {:.3f}'.format(class_name, score),
                bbox=dict(facecolor='blue', alpha=0.5),
                fontsize=14, color='white')

    ax.set_title(('{} detections with '
                  'p({} | box) >= {:.1f}').format(class_name, class_name,
                                                  thresh),
                  fontsize=14)
    plt.axis('off')
    plt.tight_layout()
    plt.draw()

3,demo()函数:
使用训练好的模型对测试样本进行物体探测测试:

def demo(net, image_name):
    """Detect object classes in an image using pre-computed object proposals."""

    # Load the demo image
    #使用你自己的路径时做相应的修改即可
    im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
    im = cv2.imread(im_file)

    # Detect all object classes and regress object bounds
    timer = Timer()
    timer.tic()
    scores, boxes = im_detect(net, im)
    timer.toc()
    print ('Detection took {:.3f}s for '
           '{:d} object proposals').format(timer.total_time, boxes.shape[0])

    # Visualize detections for each class
    CONF_THRESH = 0.8
    NMS_THRESH = 0.3
    for cls_ind, cls in enumerate(CLASSES[1:]):
        cls_ind += 1 # because we skipped background
        cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
        cls_scores = scores[:, cls_ind]
        dets = np.hstack((cls_boxes,
                          cls_scores[:, np.newaxis])).astype(np.float32)
        keep = nms(dets, NMS_THRESH)
        dets = dets[keep, :]
        vis_detections(im, cls, dets, thresh=CONF_THRESH)

4、parse_args()函数:
没有太大的修改

def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='Faster R-CNN demo')
    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
                        default=0, type=int)
    parser.add_argument('--cpu', dest='cpu_mode',
                        help='Use CPU mode (overrides --gpu)',
                        action='store_true')
    parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
                        choices=NETS.keys(), default='vgg16')

    args = parser.parse_args()

    return args

5、主函数:
使用主函数,调用预定义函数得出最终结果:

if __name__ == '__main__':
    cfg.TEST.HAS_RPN = True  # Use RPN for proposals

    args = parse_args()

    prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
                            'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
    caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
                              NETS[args.demo_net][1])

    if not os.path.isfile(caffemodel):
        raise IOError(('{:s} not found.\nDid you run ./data/script/'
                       'fetch_faster_rcnn_models.sh?').format(caffemodel))

    if args.cpu_mode:
        caffe.set_mode_cpu()
    else:
        caffe.set_mode_gpu()
        caffe.set_device(args.gpu_id)
        cfg.GPU_ID = args.gpu_id
    net = caffe.Net(prototxt, caffemodel, caffe.TEST)

    print '\n\nLoaded network {:s}'.format(caffemodel)

    # Warmup on a dummy image
    im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
    for i in xrange(2):
        _, _= im_detect(net, im)

    im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
                '001763.jpg', '004545.jpg']
    for im_name in im_names:
        print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
        print 'Demo for data/demo/{}'.format(im_name)
        demo(net, im_name)

    plt.show()
文件: import scrapy from demo1.items import Demo1Item import urllib from scrapy import log # BOSS直聘网站爬虫职位 class DemoSpider(scrapy.Spider): # 爬虫名, 启动爬虫时需要的参数*必填 name = 'demo' # 爬取域范围,允许爬虫在这个域名下进行爬取(可选) allowed_domains = ['zhipin.com'] # 爬虫需要的url start_urls = ['https://www.zhipin.com/c101280600/h_101280600/?query=测试'] def parse(self, response): node_list = response.xpath("//div[@class='job-primary']") # 用来存储所有的item字段 # items = [] for node in node_list: item = Demo1Item() # extract() 将xpath对象转换为Unicode字符串 href = node.xpath("./div[@class='info-primary']//a/@href").extract() job_title = node.xpath("./div[@class='info-primary']//a/div[@class='job-title']/text()").extract() salary = node.xpath("./div[@class='info-primary']//a/span/text()").extract() working_place = node.xpath("./div[@class='info-primary']/p/text()").extract() company_name = node.xpath("./div[@class='info-company']//a/text()").extract() item['href'] = href[0] item['job_title'] = job_title[0] item['sa 报错: C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\python.exe "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\pydevconsole.py" --mode=client --port=55825 import sys; print('Python %s on %s' % (sys.version, sys.platform)) sys.path.extend(['C:\\Users\\xieqianyun\\demo1', 'C:/Users/xieqianyun/demo1']) Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 7.10.0 -- An enhanced Interactive Python. Type '?' for help. PyDev console: using IPython 7.10.0 Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] on win32 runfile('C:/Users/xieqianyun/demo1/demo1/begin.py', wdir='C:/Users/xieqianyun/demo1/demo1') Traceback (most recent call last): File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\IPython\core\interactiveshell.py", line 3319, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-fc5979762143>", line 1, in <module> runfile('C:/Users/xieqianyun/demo1/demo1/begin.py', wdir='C:/Users/xieqianyun/demo1/demo1') File "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "C:\Users\xieqianyun\PyCharm Community Edition 2019.2.5\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/xieqianyun/demo1/demo1/begin.py", line 3, in <module> cmdline.execute('scrapy crawl demo'.split()) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\cmdline.py", line 145, in execute cmd.crawler_process = CrawlerProcess(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 267, in __init__ super(CrawlerProcess, self).__init__(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 145, in __init__ self.spider_loader = _get_spider_loader(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\crawler.py", line 347, in _get_spider_loader return loader_cls.from_settings(settings.frozencopy()) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 61, in from_settings return cls(settings) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 25, in __init__ self._load_all_spiders() File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\spiderloader.py", line 47, in _load_all_spiders for module in walk_modules(name): File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\site-packages\scrapy\utils\misc.py", line 73, in walk_modules submod = import_module(fullpath) File "C:\Users\xieqianyun\AppData\Local\Programs\Python\Python36\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 994, in _gcd_import File "<frozen importlib._bootstrap>", line 971, in _find_and_load File "<frozen importlib._bootstrap>", line 955, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 665, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "C:\Users\xieqianyun\demo1\demo1\spiders\demo.py", line 4, in <module> from scrapy import log ImportError: cannot import name 'log'
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值