数据结构-LRU缓存(C语言实现)

遇到困难,不必慌张,正是成长的时候,耐心一点!

前言

本篇文章主要是为了记录实现LRU缓存的方法和思考的过程。

一、题目介绍

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;
如果不存在,则向缓存中插入该组 key-value 。
如果插入操作导致关键字数量超过 capacity ,则应该逐出最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

下面是本人的一些废话,不感兴趣可直接看实现过程

看完题目,看到函数 get 和 put 必须以 O(1) 的平均时间复杂度运行,第一反应是顺序存储的随机存取才可以实现O(1)的时间复杂度,也就是说一定会有一块连续的存储空间存储数据,且大小为capacity。可以把key对应连续的存储空间的下标,但是看到提示里面的key的范围超出了capacity的范围,那如何在让key在[0,capacity]循环呢?脑子直接想到了循环队列的取余法,因为最近用循环队列比较频繁。
但是,经过取余后,还是会造成出现重复的key,该怎们解决呢?突然想到数据结构里面的散列表的碰撞的处理,立马去看关于散列表的介绍,以前没学的东西,现在又冒出来找我了。
看了以后,觉得很神奇,原来取余法是散列函数的一种,并使用频繁的一种。然后又看了关于碰撞的处理,书上介绍两种,第一种叫开地址法,第二种方法叫拉链法。
解决了碰撞问题,那么如何实现最近最少使用,一想到这是关于链表的题目,慢慢想到了循环单链表,头插法实现最近使用,而尾结点一定是最少使用,也就是当缓存空间达到capacity时,需要删除的。但是写了一半代码,发现当访问结点为尾结点时,需要更改尾结点,也就是需要尾结点的前驱。我知道,在单链表中,寻找某个结点前驱时间复杂度是O(n),不符合题意,立马把代码删除。
经过思考,心情里变得比较烦躁,但又不想看题解,因为想着现在正是考验我的时候,想着这道题一定想要教会我什么。尝试让自己变得冷静,不断地翻开数据结构这本书,看到双向链表,哎,这不就是为了解决以O(1)时间复杂度访问某个结点前驱的问题嘛!为什么没有马上想到,是因为平时做的题目都是单链表,双向链表用的太少了…
以上问题都解决了后,刚开始使用开地址法的线性探查法解决碰撞时,发现最后几个测试用例超时了,但是,说明思路是对的,因为线性探访的最坏情况的时间复杂度就是O(n)。
然后改为使用了拉链法,写代码用的时间不多,调试用了很多时间,最终,在不放弃的情况下,终于找到了代码的某处错误。真是太不容易了,因为常规测试用例通过了,在一些复杂的测试用例没通过,又无法一步一步的调试,只能不断地阅读代码,最后发现是在某个很隐秘且常规测试用例很难覆盖的地方,我当场麻了…
所幸,最后还是一步一步的写出来了,还是非常开心的,感觉时间花的太值了!

二、实现过程

2.1 实现原理

实现原理:散列表+双向链表
散列表解决了key重复问题,并解决函数 get 和 put 必须以 O(1) 的平均时间复杂度运行的问题
双向链表解决了最近使用和最少使用的问题,头插法解决最近使用,尾结点解决了最少使用
结构图如图2.1所示:
在这里插入图片描述

图2.1 LRU原理图

2.2 实现思路

2.2.1 双向链表

为了方便双向链表的插入和删除操作,可以使用两个辅助结点,一个伪头部和一个伪尾部,实现了每个真实结点都有前驱和后继
在这里插入图片描述

图2.2.1 双向链表

2.2.2 散列表

这里主要想介绍解决碰撞问题的拉链法。
设散列表的大小为m,使用拉链法需要建立m条链表,所有散列地址相同的元素放在同一条链表中,如果某个地址中没有存放任何元素,则对应的链表为空链表。设关键码key,根据散列函数h计算出h(key),即可确定第h(key)条链表,然后在该链表进行插入和删除及检索操作。
在本题中,散列函数为取余法,散列表的大小为capacity
h ( k e y ) = k e y   %   c a p a c i t y h(key) = key \,\%\, capacity h(key)=key%capacity
在本题中, h a s h K e y = h ( k e y ) , h a s h V a l u e = h a s h T a b l e [ h a s h K e y ] hashKey = h(key), hashValue = hashTable[hashKey] hashKey=h(key),hashValue=hashTable[hash

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值