Allowing GPU memory growth

本文介绍如何在TensorFlow中管理和控制GPU内存使用。包括使用allow_growth选项按需分配GPU内存,以及通过per_process_gpu_memory_fraction选项限定进程可使用的GPU内存量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

默认情况下,TensorFlow会占用所有GPUs的所有GPU内存(取决于CUDA_VISIBLE_DEVICES这个系统变量),这样做可以减少内存碎片,更有效地利用设备上相对宝贵的GPU内存资源。

在某些情况下,该进程仅仅需要分配可用内存的一部分,或者根据该进程的需要来增加内存的使用量。TensorFlow在Session上提供了两个Config选项来进行控制。

第一个是“allow_growth”选项,它仅仅基于运行时的分配来分配更多的GPU内存:它开始分配非常少的内存,并且随着Session的运行和更多的GPU内存需求,扩展TensorFlow所需的GPU内存区域。这可能导致很糟糕的内存碎片。要打开此选项,请在ConfigProto中将设置为:

#allow growth
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)
# 使用allow_growth option,刚一开始分配少量的GPU容量,然后按需慢慢的增加,由于不会释放内存,所以会导致碎片

第二个方法是“pre_process_gpu_memory_fraction“选项,它决定了每个可见的GPU应分配的内存总量的百分比。例如,你可以告诉TensorFlow仅仅分配总内存的40%,通过以下设定就可以实现:

# per_process_gpu_memory_fraction
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4
session = tf.Session(config=config, ...)
#设置每个GPU应该拿出多少容量给进程使用,0.4代表 40%

如果你想限制TensorFlow进程可利用的GPU内存数量,以上对你非常的有用。

Reference:

【1】https://www.tensorflow.org/guide/using_gpu

【2】TensorFlow炼丹(1) Using GPUs - 张天亮的文章 - 知乎 https://zhuanlan.zhihu.com/p/28083241

【3】https://blog.youkuaiyun.com/u012436149/article/details/53837651

### NVIDIA GPU Specifications and Parameters NVIDIA GPUs are designed to run on all CUDA-capable hardware, ensuring compatibility across a wide range of devices[^1]. The specific parameters and specifications of these GPUs can vary significantly depending on the architecture (e.g., Kepler, Pascal, Ampere), model series (e.g., GTX, RTX), and generation. Below is an overview of key aspects typically included in NVIDIA GPU specifications: #### 1. Architecture and Compute Capability The compute capability defines the features supported by each GPU architecture. For example: - **Kepler**: Introduced support for dynamic parallelism. - **Pascal**: Enhanced memory bandwidth with GDDR5X and HBM2. - **Ampere**: Added second-generation ray tracing cores and enhanced tensor cores for AI workloads. Each architecture has its own set of capabilities that influence performance metrics such as floating-point operations per second (FLOPS). #### 2. Core Count and Clock Speeds GPUs consist of multiple streaming multiprocessors (SMs). Each SM contains several CUDA cores responsible for executing instructions concurrently. Key figures include: - Number of CUDA Cores: Determines raw computational power. - Base/Boost Clock Frequencies: Indicates operating speeds under normal or boosted conditions. For instance, modern GeForce RTX cards may feature thousands of CUDA cores running at GHz-level frequencies. #### 3. Memory Configuration Memory plays a crucial role in determining overall system throughput. Important factors here comprise: - Type: Common types include GDDR5, GDDR6, HBM2 etc. - Capacity: Amount of onboard VRAM available for storing textures, buffers et al. - Bandwidth: Rate at which data transfers between GPU and attached RAM occur. An illustrative case would be using parameterization techniques via software tools like those mentioned earlier where raster images get processed through pipelines involving texture mapping processes outlined previously[^2]. #### 4. Power Consumption & Thermal Design Points (TDP) Power requirements must align closely with expected usage scenarios while maintaining thermal efficiency within acceptable limits defined by manufacturers' guidelines. Additionally, simulators exist allowing developers insight into how unified shader graphics pipeline operates internally helping optimize applications accordingly.[^3] ```python # Example Python Code Showing How To Query Basic Information About A Device Using PyCUDA Library import pycuda.autoinit from pycuda.compiler import SourceModule mod = SourceModule(""" __global__ void multiply_them(float *dest, float *a, float *b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; } """) multiply_them = mod.get_function("multiply_them") print(pycuda.driver.Device(0).name()) # Prints name of first detected device e.g 'GeForce GTX ...' ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值