padding的用途:
(1)保持边界信息,如果没有加padding的话,输入图片最边缘的像素点信息只会被卷积核操作一次,但是图像中间的像素点会被扫描到很多遍,那么就会在一定程度上降低边界信息的参考程度,但是在加入padding之后,在实际处理过程中就会从新的边界进行操作,就从一定程度上解决了这个问题。
(2)可以利用padding对输入尺寸有差异图片进行补齐,使得输入图片尺寸一致。
(3)在卷积神经网络的卷积层加入Padding,可以使得卷积层的输入维度和输出维度一致。
(4)卷积神经网络的池化层加入Padding,一般都是保持边界信息和(1)所述一样。
本文探讨了Padding在卷积神经网络中的重要作用,包括保持边界信息、调整输入尺寸一致性及维持卷积层输入输出维度一致等方面。此外还讨论了Padding在池化层中的应用。
4万+

被折叠的 条评论
为什么被折叠?



