引言
随着查询分析的复杂性增加,大语言模型(LLM)在理解如何响应某些场景时可能会面临挑战。为了提高性能,我们可以在提示中添加示例,以便更好地引导模型。本文将详细介绍如何为我们在Quickstart中构建的LangChain YouTube视频查询分析器添加示例,以优化其响应准确性。
主要内容
设置环境
安装依赖项
我们需要安装langchain-core
和langchain-openai
库。
# %pip install -qU langchain-core langchain-openai
设置环境变量
我们将使用OpenAI,你需要配置API密钥。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# 使用API代理服务提高访问稳定性,可以根据需要配置API代理
查询架构定义
我们需要定义一个查询架构,让模型输出更结构化的数据。我们将增加一个sub_queries
字段来包含从顶级问题中派生出的更具体的问题。
from typing import List, Optional
from langchain_core.pydantic_v1 import BaseModel, Field
sub_queries_description = """\
If the original question contains multiple distinct sub-questions, \
or if there are more generic questions that would be helpful to answer in \
order to answer the original question, write a list of all relevant sub-questions. \
Make sure this list is comprehensive and covers all parts of the original question. \
It's ok if there's redundancy in the sub-questions. \
Make sure the sub-questions are as narrowly focused as possible."""
class Search(BaseModel):
"""Search over a database of tutorial videos about a software library."""
query: str = Field(
...,
description="Primary similarity search query applied to video transcripts.",
)
sub_queries: List[str] = Field(
default_factory=list, description=sub_queries_description
)
publish_year: Optional