Leetcode 494 Target Sum

class Solution {
    int ans=0;
    public int findTargetSumWays(int[] nums, int S) {
        if (nums == null || nums.length == 0) return ans;
        dfs(nums, S, 0);
        return ans;
    }
    
    public void dfs(int[] nums, int S,int pos) {
        if(pos==nums.length){
            if(S==0){
                ans++;
            }
            return;
        }
        dfs(nums,S-nums[pos],pos+1);
        dfs(nums,S+nums[pos],pos+1);
    }
}

 

内容概要:本文系统阐述了Java Persistence API(JPA)的核心概念、技术架构、核心组件及实践应用,重点介绍了JPA作为Java官方定义的对象关系映射(ORM)规范,如何通过实体类、EntityManager、JPQL和persistence.xml配置文件实现Java对象与数据库表之间的映射与操作。文章详细说明了JPA解决的传统JDBC开发痛点,如代码冗余、对象映射繁琐、跨数据库兼容性差等问题,并解析了JPA与Hibernate、EclipseLink等实现框架的关系。同时提供了基于Hibernate和MySQL的完整实践案例,涵盖Maven依赖配置、实体类定义、CRUD操作实现等关键步骤,并列举了常用JPA注解及其用途。最后总结了JPA的标准化优势、开发效率提升能力及在Spring生态中的延伸应用。 适合人群:具备一定Java基础,熟悉基本数据库操作,工作1-3年的后端开发人员或正在学习ORM技术的中级开发者。 使用场景及目标:①理解JPA作为ORM规范的核心原理与组件协作机制;②掌握基于JPA+Hibernate进行数据库操作的开发流程;③为技术选型、团队培训或向Spring Data JPA过渡提供理论与实践基础。 阅读建议:此资源以理论结合实践的方式讲解JPA,建议读者在学习过程中同步搭建环境,动手实现文中示例代码,重点关注EntityManager的使用、JPQL语法特点以及注解配置规则,从而深入理解JPA的设计思想与工程价值。
LeetCode 中,two-sum 问题是经典的算法问题之一。使用哈希表解法是其中一种高效且常见的实现方式。该方法的时间复杂度为 O(n),空间复杂度也为 O(n),相较于暴力双重循环的 O(n²) 方法更优。 ### 哈希表解法的核心思想 通过遍历数组,在每次迭代中计算当前元素与目标值之间的差值(即 `target - nums[i]`),然后检查该差值是否已经存在于哈希表中。如果存在,则说明找到了满足条件的两个数;如果不存在,则将当前元素及其索引存入哈希表中,以便后续查找。 ### C++ 实现代码 ```cpp class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int, int> hash; // 存储元素的值和下标 int n = nums.size(); for (int i = 0; i < n; ++i) { int x = target - nums[i]; // 寻找对应的另一个加数 if (hash.count(x)) return { hash[x], i }; // 如果找到,直接返回结果 else hash[nums[i]] = i; // 否则,将当前元素存入哈希表 } return { -1, -1 }; // 没有找到符合条件的两个数 } }; ``` ### C 实现代码 另一种实现方式是使用静态分配或动态分配的哈希表结构,例如使用数组模拟哈希表。这种方法在某些特定条件下可能效率更高,尤其是当输入数据范围较小且已知时。 以下是一个优化过的 C 语言实现示例: ```c int* twoSum(int* nums, int numsSize, int target, int* returnSize) { int min = INT_MAX; *returnSize = 2; int i = 0; for (i = 0; i < numsSize; i++) { if (nums[i] < min) min = nums[i]; } int max = target - min; int len = max - min + 1; // 确定哈希表长度 if (len <= 50000) { int *table = (int*)malloc(len * sizeof(int)); int *indice = (int*)malloc(2 * sizeof(int)); for (i = 0; i < len; i++) { table[i] = -1; // 初始化哈希表 } for (i = 0; i < numsSize; i++) { if (nums[i] - min < len) { if (table[target - nums[i] - min] != -1) { indice[0] = table[target - nums[i] - min]; indice[1] = i; return indice; } table[nums[i] - min] = i; } } free(table); return indice; } else { int *a = (int *)malloc(sizeof(int) * 2); for (int i = 0; i < numsSize; i++) { for (int j = 0; j < numsSize; j++) { if (i != j && nums[i] + nums[j] == target) { a[0] = i; a[1] = j; return a; } } } return NULL; } } ``` ### 关键点分析 - **时间复杂度**:O(n),因为每个元素只被处理一次。 - **空间复杂度**:O(n),用于存储哈希表。 - **适用场景**:适用于需要快速查找配对值的问题。 - **注意事项**:确保在查找过程中不会重复使用同一个元素,因此需在哈希表中保存的是之前遍历过的元素[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值