poj 1611 The Suspects

通过并查集算法解决SARS疑似病例传播问题,当一名学生被确认为疑似病例时,与其同组的所有成员均被视为疑似病例。

                                               The Suspects

Time Limit: 1000MS Memory Limit: 20000K
Total Submissions: 37732 Accepted: 18302

Description

Severe acute respiratory syndrome (SARS), an atypical pneumonia of unknown aetiology, was recognized as a global threat in mid-March 2003. To minimize transmission to others, the best strategy is to separate the suspects from others.
In the Not-Spreading-Your-Sickness University (NSYSU), there are many student groups. Students in the same group intercommunicate with each other frequently, and a student may join several groups. To prevent the possible transmissions of SARS, the NSYSU collects the member lists of all student groups, and makes the following rule in their standard operation procedure (SOP).
Once a member in a group is a suspect, all members in the group are suspects.
However, they find that it is not easy to identify all the suspects when a student is recognized as a suspect. Your job is to write a program which finds all the suspects.

Input

The input file contains several cases. Each test case begins with two integers n and m in a line, where n is the number of students, and m is the number of groups. You may assume that 0 < n <= 30000 and 0 <= m <= 500. Every student is numbered by a unique integer between 0 and n−1, and initially student 0 is recognized as a suspect in all the cases. This line is followed by m member lists of the groups, one line per group. Each line begins with an integer k by itself representing the number of members in the group. Following the number of members, there are k integers representing the students in this group. All the integers in a line are separated by at least one space.
A case with n = 0 and m = 0 indicates the end of the input, and need not be processed.

Output

For each case, output the number of suspects in one line.

Sample Input

100 4
2 1 2
5 10 13 11 12 14
2 0 1
2 99 2
200 2
1 5
5 1 2 3 4 5
1 0
0 0

Sample Output

4
1
1


简要题意:

有n个同学,m个小组,其中每个同学有一个唯一编号(0-n-1),0号同学默认为感染者,和0号同学处在同一个小组内的同学均视为感染者,而且同一个人可以加入多个小组,若组内有感染者则整个小组均视为感染者,求感染者的人数。

分析:

并查集的应用,感染者合并为一个集合,最后求该集合元素的个数。

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;

const int MAXN=30000+5;
int pre[MAXN];  //记录前驱节点


int findRoot(int x)  //求某个元素的根节点
{
    while(pre[x]!=x)
        x=pre[x];
    return x;
}

void merge(int x,int y)  //合并两个元素
{
    int xRoot=findRoot(x);
    int yRoot=findRoot(y);
    if( xRoot!=yRoot )
        pre[xRoot]=yRoot;
}


int main()
{
    int n,m;
    while(~scanf("%d %d",&n,&m))
    {
        if(m==0 && n==0)
            break;
        int i,j;
        for(i=0;i<n;++i)
        pre[i]=i;
        for(i=0;i<m;++i)
        {
            int a;
            scanf("%d",&a);
            int b[MAXN];
            for(j=0;j<a;++j)
            {
                int c;
                scanf("%d",&c);
                b[j]=c;
                merge(b[0],b[j]);
            }
        }
        int mycount=0;
        for(i=0;i<n;++i)
        {
            if(findRoot(i)==findRoot(0))  //求与0号同学根节点相同的人数,即为答案
                mycount++;
        }
        printf("%d\n",mycount);
    }
    return 0;
}



基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值