codeforce 961E

本文介绍了一种算法,用于解决一个有趣的问题:计算出所有可能的剧集对数量,这些剧集对满足特定条件——即对于每一对(x, y),存在季节x的第y集和季节y的第x集。通过使用树状数组来维护和更新数据,该算法能够有效地计算出答案。
E. Tufurama
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

One day Polycarp decided to rewatch his absolute favourite episode of well-known TV series "Tufurama". He was pretty surprised when he got results only for season 7 episode 3 with his search query of "Watch Tufurama season 3 episode 7 online full hd free". This got Polycarp confused — what if he decides to rewatch the entire series someday and won't be able to find the right episodes to watch? Polycarp now wants to count the number of times he will be forced to search for an episode using some different method.

TV series have n seasons (numbered 1 through n), the i-th season has ai episodes (numbered 1 through ai). Polycarp thinks that if for some pair of integers x and y (x < y) exist both season x episode y and season y episode x then one of these search queries will include the wrong results. Help Polycarp to calculate the number of such pairs!

Input

The first line contains one integer n (1  ≤ n  ≤  2·105) — the number of seasons.

The second line contains n integers separated by space a1, a2, ..., an (1 ≤ ai ≤ 109) — number of episodes in each season.

Output

Print one integer — the number of pairs x and y (x < y) such that there exist both season x episode y and season y episode x.

Examples
input
Copy
5
1 2 3 4 5
output
Copy
0
input
Copy
3
8 12 7
output
Copy
3
input
Copy
3
3 2 1
output
Copy
2
Note

Possible pairs in the second example:

  1. x = 1y = 2 (season 1 episode 2  season 2 episode 1);
  2. x = 2y = 3 (season 2 episode 3  season 3 episode 2);
  3. x = 1y = 3 (season 1 episode 3  season 3 episode 1).

In the third example:

  1. x = 1y = 2 (season 1 episode 2  season 2 episode 1);
  2. x = 1y = 3 (season 1 episode 3  season 3 episode 1).
求出满足a[i]>=j&&a[j]>=i的有序对< i , j >的对数(i<j)。 树状数组维护当前j位置前有多少个i位置数不满足a[i]>=j 。
#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
typedef long double ld;

#define x0 x0___
#define y0 y0___
#define pb push_back
#define SZ(X) ((int)X.size())
#define mp make_pair
#define fi first
#define se second
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pli pair<ll,int>
#define pil pair<int,ll>
#define ALL(X) X.begin(),X.end()
#define RALL(X) X.rbegin(),X.rend()
#define rep(i,j,k) for(int i = j;i <= k;i ++)
#define per(i,j,k) for(int i = j;i >= k;i --)
#define mem(a,p) memset(a,p,sizeof(a))


const ll MOD = 1E9 + 7;
ll qmod(ll a,ll b,ll c) {ll res=1;a%=c; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%c;a=a*a%c;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}

template<typename T, typename S>
void upmax(T& a,S b){if(a<b) a=b;}
template<typename T, typename S>
void upmin(T& a,S b){if(a>b) a=b;}
template<typename T>
void W(T b){cout << b << endl;}
void gettle() {while(1);}
void getre() {int t=0;t/=t;}


/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

const int N = 2E5 + 7;
int n;
int f[N];
int id[N], a[N];
void add(int x)
{
    for(;x<=n;x+=x&-x){
        f[x] ++;
    }
}
int ask(int x)
{
    int s = 0;
    for(;x;x-=x&-x){
        s += f[x];
    }
    return s;
}

int main()
{
    scanf("%d", &n);
    rep (i,1,n) {
        scanf("%d", &a[i]);
        id[i] = i;
        upmin(a[i], n);
    }
    sort(id+1,id+1+n,[](const int &A,const int&B){return a[A] < a[B];});
    int p = 0;
    ll res = 0;
    rep (i,2,n) {
        int j = min(i-1, a[i]);
        for(;p + 1 <= n && a[id[p+1]] < i;){ //若当前位置小于i,那么显然他对后面的贡献为0。
             p++;
            add(id[p]);
        }
        res += j - ask(j);
    }
    printf("%lld\n", res);
    return 0;
}


【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
### Codeforces Problem or Contest 998 Information For the specific details on Codeforces problem or contest numbered 998, direct references were not provided within the available citations. However, based on similar structures observed in other contests such as those described where configurations often include constraints like `n` representing numbers of elements with defined ranges[^1], it can be inferred that contest or problem 998 would follow a comparable format. Typically, each Codeforces contest includes several problems labeled from A to F or beyond depending on the round size. Each problem comes with its own set of rules, input/output formats, and constraint descriptions. For instance, some problems specify conditions involving integer inputs for calculations or logical deductions, while others might involve more complex algorithms or data processing tasks[^3]. To find detailed information regarding contest or problem 998 specifically: - Visit the official Codeforces website. - Navigate through past contests until reaching contest 998. - Review individual problem statements under this contest for precise requirements and examples. Additionally, competitive programming platforms usually provide comprehensive documentation alongside community discussions which serve valuable resources when exploring particular challenges or learning algorithmic solutions[^2]. ```cpp // Example C++ code snippet demonstrating how contestants interact with input/output during competitions #include <iostream> using namespace std; int main() { int n; cin >> n; // Process according to problem statement specifics } ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值