Deriving implementation design

Mashkov Sergey 

华为编程语言实验室圣彼得堡研究所研究员

@Derive[ToString, Equatable]class C {    let a = 1}

Motivation

For frequently used interfaces one often need to write implementations for user defined types. Even though such implementations are very trivial, it takes time and sometimes it's a lot of "mechanical work", especially for so called data classes having a lot of fields. Such work is usually perceived as annoying and boring. Also some interfaces also require to implement a lot of functions, e.g. Comparable requires to implement 9 functions.

struct UserInfo <: Equatable<UserInfo> {    var login: String    var email: String    var address: String    var age: Int    public override operator func ==(other: UserInfo) {        this.login == other.login &&            this.email == other.email &&            this.address == other.address &&            this.age == other.age    }    public override operator func !=(other: UserInfo) {        !(this == other)    }}enum Constraints <: Equatable<Constraints> & ToString {    | North    | West    | East    | South    | Grid(Int)    public override operator func ==(other: Constraints) {        match ((this, other)) {            case (North, North) => true            case (West, West) => true            case (East, East) => true            case (South, South) => true            case (Grid(a), Grid(b)) where a == b => true            case _ => false        }    }    public override operator func !=(other: Constraints) {        !(this == other)    }    public override func toString() {        match (this) {            case North => "North"            case West => "West"            case East => "East"            case South => "South"            case Grid(gap) => "Grid(${gap})"        }    }}

Many languages has solutions for the problem: language features, code processing tools or compiler plugins.

  • Java: Lombok (source processor)

  • Kotlin: data classes

  • C#: Equ (LINQ+runtime magic), Lombok.NET and others

  • Go: deriving

  • Groovy: groovy.transform.* transformers (compiler plugin)

  • Rust: derive

  • Haskell, OCaml: deriving

Overall architecture

The API part consists of data model that is constructed by input declarationand macro attributes and passed into deriving implementation. Impl core containsall the shared implementation that is common for all derivings. The macro packagecontains only macro declarations and basic stuff that can't be moved out ofthe package and it does delegate all the work to the core.

The core takes parsed input from macro, does analysis and validation, findsderiving implementations, does preparations and then invoke particular derivings.

The registry contains mappings between derived interfaces and derivingimplementations. Currently the mapping is hardcoded.

Stages

Combine

At this stage we take all options and combine them together also doing checking

 Lookup

At lookup stage we are looking for deriving implementations. For every interfacerequested to be derived we are looking into the derivings registry and findimplementations. At the moment the registry is hardcoded but in the futureit can be introduced a way to inject implementations to make derivingscustomizable.

 Resolve

For all fields missing types specified explicitly we do simple type resolutionbased on field initializer expressions. In the future when we will havelate macro, we will simply use types provided at the late stage.

Since we don't have late macro yet, we can temporarily implement simple typeresolution by evaluating initializer expression AST. This only works forexpressions consisting from literals and simple arithmetic operations and thiswould be enough for many cases. If the expression is too complicated or dependson unknown functions or properties then we give-up and produce error on thefield and demand user to specify the field type explicitly since it is allowedby the spec.

Verify

At this stage we do check types whenever possible for sub-typing. Every fieldtype need to be implementing the particular deriving interface we are generatingfor. For builtin types such as String, Int64 and others we do know theirtype hierarchy and can omit checks for ToString, Equatable and Comparable.

For unknown types since we have neither late macros nor compile-time reification,we produce "dead" code doing assignment to a local variable of the correspondingtype. We do use fields identifier token in the assignment expression so thatthe compiler will report error at the field itself if the type doesn't fit.

The example of the generated code would look like this (see function checkTypes):

@Derive[ToString]class C {    let x = createX() // we don't know the type of x}// generated code:extend C <: ToString {    public func toString(): ToString { /** implementation goes here **/ }    private func checkTypes() {        let _: ToString = x  // type check    }}

If there are no fields to verify then the function checkTypes shouldn't begenerated. The actual name of the function should be different to avoid potentialclash with user codes namespace. If produced, the verification code is alsoappended during the next stage.

Generate

Obviously, at this stage we construct ast nodes, constructing implementationsand if necessary we also construct generic constraints. Collect list of extendnodes and after all we render them to tokens and concatenate them with theoriginal tokens. We never modify the original declaration tokens so no risk ofaccidental breaking user code.

What is important is that we do always try to produce as much code as possibleand do never do fail-fast. Instead we report diagnostics vis diagReport()facility and try to proceed. The reason why it's important is that the macrohave to complete without exceptions so that the compiler will be able tovisualize macro diagnostics properly and it will also get a chance to handleproduced type check functions that wouldn't appear if we just fail.

 Generic constraints

For every derived interface we have already found the deriving implementation.Each deriving implementation provides default upper bounds for generics anda function for constructing upper bounds with required generic arguments ifnecessary. For example, EquatableDeriving provides a way to construct genericsin form:

@Derive[Equatable]class C<T> { ... }// generatedextend <T> C<T> <: Equatable<C<T>> where    T <: Equatable<T> // this is constructed by the deriving implementation

The only particular deriving know how to construct the constraints for thespecific derived interface so we don't have any defaults in the derivings core.

 API

Data model

DerivingTarget contains an analysed target declaration enriched with usersettings and pure information for derivings, such as an array of named attributesthat should be considered during generation. On the contrary, classes ending withSettings contains only options from users without analysis.

All the structures are computed by the derivings core and passed into derivingimplementation.

Deriving core and implementations

The Deriving interface represents a deriving implementation. It may handleone or more interfaces and should be able to provide type information aboutinterfaces hierarchy that is used for sorting and combining derivings in thecases when deriving interfaces intersect (for example Equatable and Comparable).

GenericsInjector interface implementation is provided by deriving implementationand has two functions. injectGenerics should provide generic arguments forthe interface if required. constraintsFor should construct default genericconstraints.

All the functions are invoked by the deriving core.

Format

These are the following generation schemas for builtin derivings

ToString format

Examples:

User(name: "bot1")User()Server(host: "Venus", port: 10443)E.EnumMember1E.EnumMember2(773)E.EnumMember3(test, 123, named: 1) // 'named' stands for enum property
@Derive[ToString]class C {    let a = 1    @DeriveInclude    prop b: String { get() { ... }}}// generatedextend C <: ToString {    public func toString(): String {        let sb = StringBuilder()        sb.append("C(")        sb.append("a = ")        sb.append(a.toString())        sb.append(", b = ")        sb.append(b.toString())        sb.append(")")        return sb.toString()    }}

 Equatable and Comparable

@Derive[Comparable]class User {    var name = "root"}// generatedextend User <: Equatable<User> {    public operator func ==(other: User): Bool {        if (name != other.name) {            return false        }        return true    }    public operator func !=(other: User): Bool {        return !(this == other)    }}extend User <: Comparable<User> {    public func compare(other: User): Ordering {        match (name.compare(other.name)) {            case Ordering.EQ => ()            case other => return other        }        return Ordering.EQ    }    public operator func <(other: User): Bool {        return compare(other) == Ordering.LT    }    public operator func <=(other: User): Bool {        return compare(other) <= Ordering.EQ    }    public operator func >(other: User): Bool {        return compare(other) == Ordering.GT    }    public operator func >=(other: User): Bool {        return compare(other) >= Ordering.EQ    }}

 Hashable

extend User <: Hashable {    public func hashCode(): Int64 {        var h = DefaultHasher()        h.write(name)        return h.finish()    }}

 Resource

@Derive[Resource]class Service {    let log = openFile(....)    let connection = openSocket(...)    let sql = openSql(connection)}// generatedextend Service <: core.Resource {    public func close(): Unit {        try {            tryClose(sql)        } finally {            try {                tryClose(connection)            } finally {                tryClose(log)            }        }    }    // these are generated helpers    // used in close() and isClosed()    private func tryClose(e: Resource) {        e.close()    }    private func tryClose<T>(_: T) {        // not a resource    }}
内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行二次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方二维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征集合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 集成多种主流机器学习算法: * Lass...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值