Deriving implementation design

Mashkov Sergey 

华为编程语言实验室圣彼得堡研究所研究员

@Derive[ToString, Equatable]class C {    let a = 1}

Motivation

For frequently used interfaces one often need to write implementations for user defined types. Even though such implementations are very trivial, it takes time and sometimes it's a lot of "mechanical work", especially for so called data classes having a lot of fields. Such work is usually perceived as annoying and boring. Also some interfaces also require to implement a lot of functions, e.g. Comparable requires to implement 9 functions.

struct UserInfo <: Equatable<UserInfo> {    var login: String    var email: String    var address: String    var age: Int    public override operator func ==(other: UserInfo) {        this.login == other.login &&            this.email == other.email &&            this.address == other.address &&            this.age == other.age    }    public override operator func !=(other: UserInfo) {        !(this == other)    }}enum Constraints <: Equatable<Constraints> & ToString {    | North    | West    | East    | South    | Grid(Int)    public override operator func ==(other: Constraints) {        match ((this, other)) {            case (North, North) => true            case (West, West) => true            case (East, East) => true            case (South, South) => true            case (Grid(a), Grid(b)) where a == b => true            case _ => false        }    }    public override operator func !=(other: Constraints) {        !(this == other)    }    public override func toString() {        match (this) {            case North => "North"            case West => "West"            case East => "East"            case South => "South"            case Grid(gap) => "Grid(${gap})"        }    }}

Many languages has solutions for the problem: language features, code processing tools or compiler plugins.

  • Java: Lombok (source processor)

  • Kotlin: data classes

  • C#: Equ (LINQ+runtime magic), Lombok.NET and others

  • Go: deriving

  • Groovy: groovy.transform.* transformers (compiler plugin)

  • Rust: derive

  • Haskell, OCaml: deriving

Overall architecture

The API part consists of data model that is constructed by input declarationand macro attributes and passed into deriving implementation. Impl core containsall the shared implementation that is common for all derivings. The macro packagecontains only macro declarations and basic stuff that can't be moved out ofthe package and it does delegate all the work to the core.

The core takes parsed input from macro, does analysis and validation, findsderiving implementations, does preparations and then invoke particular derivings.

The registry contains mappings between derived interfaces and derivingimplementations. Currently the mapping is hardcoded.

Stages

Combine

At this stage we take all options and combine them together also doing checking

 Lookup

At lookup stage we are looking for deriving implementations. For every interfacerequested to be derived we are looking into the derivings registry and findimplementations. At the moment the registry is hardcoded but in the futureit can be introduced a way to inject implementations to make derivingscustomizable.

 Resolve

For all fields missing types specified explicitly we do simple type resolutionbased on field initializer expressions. In the future when we will havelate macro, we will simply use types provided at the late stage.

Since we don't have late macro yet, we can temporarily implement simple typeresolution by evaluating initializer expression AST. This only works forexpressions consisting from literals and simple arithmetic operations and thiswould be enough for many cases. If the expression is too complicated or dependson unknown functions or properties then we give-up and produce error on thefield and demand user to specify the field type explicitly since it is allowedby the spec.

Verify

At this stage we do check types whenever possible for sub-typing. Every fieldtype need to be implementing the particular deriving interface we are generatingfor. For builtin types such as String, Int64 and others we do know theirtype hierarchy and can omit checks for ToString, Equatable and Comparable.

For unknown types since we have neither late macros nor compile-time reification,we produce "dead" code doing assignment to a local variable of the correspondingtype. We do use fields identifier token in the assignment expression so thatthe compiler will report error at the field itself if the type doesn't fit.

The example of the generated code would look like this (see function checkTypes):

@Derive[ToString]class C {    let x = createX() // we don't know the type of x}// generated code:extend C <: ToString {    public func toString(): ToString { /** implementation goes here **/ }    private func checkTypes() {        let _: ToString = x  // type check    }}

If there are no fields to verify then the function checkTypes shouldn't begenerated. The actual name of the function should be different to avoid potentialclash with user codes namespace. If produced, the verification code is alsoappended during the next stage.

Generate

Obviously, at this stage we construct ast nodes, constructing implementationsand if necessary we also construct generic constraints. Collect list of extendnodes and after all we render them to tokens and concatenate them with theoriginal tokens. We never modify the original declaration tokens so no risk ofaccidental breaking user code.

What is important is that we do always try to produce as much code as possibleand do never do fail-fast. Instead we report diagnostics vis diagReport()facility and try to proceed. The reason why it's important is that the macrohave to complete without exceptions so that the compiler will be able tovisualize macro diagnostics properly and it will also get a chance to handleproduced type check functions that wouldn't appear if we just fail.

 Generic constraints

For every derived interface we have already found the deriving implementation.Each deriving implementation provides default upper bounds for generics anda function for constructing upper bounds with required generic arguments ifnecessary. For example, EquatableDeriving provides a way to construct genericsin form:

@Derive[Equatable]class C<T> { ... }// generatedextend <T> C<T> <: Equatable<C<T>> where    T <: Equatable<T> // this is constructed by the deriving implementation

The only particular deriving know how to construct the constraints for thespecific derived interface so we don't have any defaults in the derivings core.

 API

Data model

DerivingTarget contains an analysed target declaration enriched with usersettings and pure information for derivings, such as an array of named attributesthat should be considered during generation. On the contrary, classes ending withSettings contains only options from users without analysis.

All the structures are computed by the derivings core and passed into derivingimplementation.

Deriving core and implementations

The Deriving interface represents a deriving implementation. It may handleone or more interfaces and should be able to provide type information aboutinterfaces hierarchy that is used for sorting and combining derivings in thecases when deriving interfaces intersect (for example Equatable and Comparable).

GenericsInjector interface implementation is provided by deriving implementationand has two functions. injectGenerics should provide generic arguments forthe interface if required. constraintsFor should construct default genericconstraints.

All the functions are invoked by the deriving core.

Format

These are the following generation schemas for builtin derivings

ToString format

Examples:

User(name: "bot1")User()Server(host: "Venus", port: 10443)E.EnumMember1E.EnumMember2(773)E.EnumMember3(test, 123, named: 1) // 'named' stands for enum property
@Derive[ToString]class C {    let a = 1    @DeriveInclude    prop b: String { get() { ... }}}// generatedextend C <: ToString {    public func toString(): String {        let sb = StringBuilder()        sb.append("C(")        sb.append("a = ")        sb.append(a.toString())        sb.append(", b = ")        sb.append(b.toString())        sb.append(")")        return sb.toString()    }}

 Equatable and Comparable

@Derive[Comparable]class User {    var name = "root"}// generatedextend User <: Equatable<User> {    public operator func ==(other: User): Bool {        if (name != other.name) {            return false        }        return true    }    public operator func !=(other: User): Bool {        return !(this == other)    }}extend User <: Comparable<User> {    public func compare(other: User): Ordering {        match (name.compare(other.name)) {            case Ordering.EQ => ()            case other => return other        }        return Ordering.EQ    }    public operator func <(other: User): Bool {        return compare(other) == Ordering.LT    }    public operator func <=(other: User): Bool {        return compare(other) <= Ordering.EQ    }    public operator func >(other: User): Bool {        return compare(other) == Ordering.GT    }    public operator func >=(other: User): Bool {        return compare(other) >= Ordering.EQ    }}

 Hashable

extend User <: Hashable {    public func hashCode(): Int64 {        var h = DefaultHasher()        h.write(name)        return h.finish()    }}

 Resource

@Derive[Resource]class Service {    let log = openFile(....)    let connection = openSocket(...)    let sql = openSql(connection)}// generatedextend Service <: core.Resource {    public func close(): Unit {        try {            tryClose(sql)        } finally {            try {                tryClose(connection)            } finally {                tryClose(log)            }        }    }    // these are generated helpers    // used in close() and isClosed()    private func tryClose(e: Resource) {        e.close()    }    private func tryClose<T>(_: T) {        // not a resource    }}
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点或真题,每个点或题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少与知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参与交流分享,或找人做压力面试来改善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值