Leetcode 刷题笔记1 动态规划part02

leetcode 62 不同路径

关于路径的初始化要考虑清楚

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [[0] * n for _ in range(m)]
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        return dp[m - 1][n - 1]

 leetcode 63 不同路径||

路径初始化

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
            return 0
        dp = [[0] * n for _ in range(m)]
        for i in range(m):
            if obstacleGrid[i][0] == 0:
                dp[i][0] = 1
            else: 
                break
        for j in range(n):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break
        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] == 1:
                    continue
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        return dp[m - 1][n - 1]

leetcode 343 整数拆分

首先根据dp[i]反向递推,推出其推导公式,关于dp数组的初始化需要注意

class Solution:
    def integerBreak(self, n: int) -> int:
        dp = [0] * (n + 1)
        dp[2] = 1
        for i in range(3, n + 1):
            for j in range(1, i // 2 + 1):
                dp[i] = max(j * (i - j), dp[i - j] * j, dp[i])
        return dp[n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值