leetcode 最后一块石头的重量 ||
问题转化, 把石头问题转化为背包问题,在target容量范围内所能装的最大石头重量
class Solution:
def lastStoneWeightII(self, stones: List[int]) -> int:
total = sum(stones)
target = total // 2
dp = [0] * (target + 1)
for stone in stones:
for j in range(target, stone - 1, -1):
dp[j] = max(dp[j], dp[j - stone] + stone)
return total - 2 * dp[target]
leetcode 494 目标和
本题的关键在于问题转化,给出具体数值的就可以反推出来正数和,就可以使用动态规划
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total = sum(nums)
if abs(target) > total:
return 0
if (target + total) % 2 == 1:
return 0
target_sum = (total + target) // 2
dp = [0] * (target_sum + 1)
dp[0] = 1
for num in nums:
for j in range(target_sum, num - 1, -1):
dp[j] += dp[j - num]
return dp[target_sum]
leetcode 474 一和零
什么样的问题可以转化为动态规划的问题呢?
数据分布式,在遍历中能够从一个结果推出另一个结果
本题转化为两个01背包问题
class Solution:
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
dp = [[0] * (n + 1) for _ in range(m + 1)]
for s in strs:
zeroNum = s.count('0')
oneNum = len(s) - zeroNum
for i in range(m, zeroNum -1 , -1):
for j in range(n, oneNum - 1, -1):
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)
return dp[m][n]
672

被折叠的 条评论
为什么被折叠?



