Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9].
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16].
This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
我偷懒了,直接用了Merge Intervals的代码。稍作修改即可。
实际上,这题可以用二分来做,不过处理起来有点烦。
而且最坏的时间复杂度依旧是O(n)。
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<Interval> answer;
intervals.push_back(newInterval);
int min = 1000000, max = -1000000;
for (vector<Interval>::iterator iter = intervals.begin(); iter != intervals.end(); iter++) {
min = min < iter->start ? min : iter->start;
max = max > iter->end ? max : iter->end;
}
int left[max - min + 1];
int right[max - min + 1];
memset(left, 0, sizeof(int) * (max - min + 1));
memset(right, 0, sizeof(int) * (max - min + 1));
for (vector<Interval>::iterator iter = intervals.begin(); iter != intervals.end(); iter++) {
left[iter->start - min]++;
right[iter->end - min]++;
}
int start = -1, count = 0;
for (int i = 0; i < max - min + 1; i++) {
count += left[i];
if (count > 0 && start == -1) {
start = i;
}
count -= right[i];
if (count == 0 && start != -1) {
answer.push_back(Interval(start + min, i + min));
start = -1;
}
}
return answer;
}
};
本文介绍了一种算法,用于在一个已排序的非重叠区间集合中插入一个新的区间,并在必要时进行合并。通过两个实例展示了如何将新区间[2,5]和[4,9]分别插入到给定的区间集合中,并返回合并后的结果。
1409

被折叠的 条评论
为什么被折叠?



