AC代码:
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int N = 100005;
struct node{
int l,r;
ll add,sum;
}tree[N<<2];
ll a[N];
void pushup(int id){
tree[id].sum = tree[id<<1].sum+tree[(id<<1)|1].sum;
}
void pushdown(int id){
if(tree[id].add){
ll tmp = tree[id].add;
tree[id<<1].add += tmp;tree[(id<<1)|1].add += tmp;
tree[id<<1].sum += (tree[id<<1].r-tree[id<<1].l+1)*tmp;
tree[(id<<1)|1].sum += (tree[(id<<1)|1].r-tree[(id<<1)|1].l+1)*tmp;
tree[id].add = 0;
}
}
void build(int id,int l,int r){
tree[id].l = l;
tree[id].r = r;
tree[id].add = 0;
if(l == r){
tree[id].sum = a[l];
return ;
}
int mid = (l+r)>>1;
build(id<<1,l,mid);
build(id<<1|1,mid+1,r);
pushup(id);
}
void update(int id,int l,int r,ll val){
if(tree[id].l >= l && tree[id].r <= r){
tree[id].add += val;
tree[id].sum += (tree[id].r-tree[id].l+1)*val;
return ;
}
pushdown(id);
int mid = (tree[id].l+tree[id].r)>>1;
if(l <= mid)
update(id<<1,l,r,val);
if(mid < r)
update((id<<1)|1,l,r,val);
pushup(id);
}
ll ans;
void query(int id,int l,int r){
if(tree[id].l >= l && tree[id].r <= r){
ans += tree[id].sum;
return ;
}
pushdown(id);
int mid = (tree[id].l+tree[id].r)>>1;
if(l <= mid)
query(id<<1,l,r);
if(mid < r)
query((id<<1)|1,l,r);
pushup(id);
}
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
for(int i = 1; i <= n; i++)
scanf("%lld",&a[i]);
build(1,1,n);
char op[10];
int x,y;
ll z;
while(m--){
scanf("%s",op);
if(op[0] == 'Q'){
ans = 0;
scanf("%d%d",&x,&y);
query(1,x,y);
printf("%lld\n",ans);
}
else if(op[0] == 'C'){
scanf("%d%d%lld",&x,&y,&z);
update(1,x,y,z);
}
}
}
return 0;
}
本文提供了一段使用C++语言实现线段树的数据结构,用于进行区间更新和区间查询操作。详细介绍了线段树的构建、更新和查询方法,并通过实例展示了如何高效地解决此类问题。
393

被折叠的 条评论
为什么被折叠?



