1.一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?
答:另外一个会说哪条路是去往诚实国的?两人所指的都是去说谎国的路。
2.12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)
答:
先取8个球,一边4个:
如果平了:
那么剩下的球中取3放左边,取3个好球放右边,称:
如果左边重,那么取两个球称一下,哪个重哪个是次品,平的话第三个重,是次品,轻的话同理
如果平了,那么剩下一个次品,还可根据需要称出次品比正品轻或者重
如果不平:
那么不妨设左边重右边轻,为了便于说明,将左边4颗称为重球,右边4颗称为轻球,剩下4颗称为好球
取重球2颗,轻球2颗放在左侧,右侧放3颗好球和一颗轻球
如果左边重,称那两颗重球,重的一个次品,平的话右边轻球次品
如果右边重,称左边两颗轻球,轻的一个次品
如果平,称剩下两颗重球,重的一个次品,平的话剩下那颗轻球次品
3.在9个点上画10条直线,要求每条直线上至少有三个点?
答:3竖线,1横线,6斜线
O O
O
O O O
O
O O
4.怎么样种植4棵树木,使其中任意两棵树的距离相等?
答:在正四面体的四个顶点种树
5.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的药丸的重量+1。只称量一次,如何判断哪个罐子的药被污染了?
答:四个罐子中分别取1,2,3,4颗药丸,称出比正常重多少,即可判断出那个罐子的药被污染
6.门外三个开关分别对应室内三盏灯,线路良好,在门外控制开关时候不能看到室内灯的情况,现在只允许进门一次,确定开关和灯的对应关系?
答:开关1打开10分钟,然后关闭,开关2打开,然后进屋看:暗且热的为开关1控制,亮的为开关2控制,暗且凉的为开关3控制
7.人民币为什么只有1、2、5、10的面值?
答:因为可以用1,2,5,10组合成任何需要的货币值,日常习惯为10进制
8.给你两颗6面色子,可以在它们各个面上刻上0-9任意一个数字,要求能够用它们拼出任意一年中的日期数值
答:123456/789012
每个飞机只有一个油箱,
飞机之间可以相互加油(注意是相互,没有加油机)
一箱油可供一架飞机绕地球飞半圈,
问题:
为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
答:3架飞机5架次,飞法:
ABC 3架同时起飞,1/8处,C给AB加满油,C返航,1/4处,B给A加满油,B返航,A到达1/2处,C从机场往另一方向起飞,3/4处,C同已经空油箱的A平分剩余油量,同时B从机场起飞,AC到7/8处同B平分剩余油量,刚好3架飞机同时返航。所以是3架飞机5架次。
一辆载油500升的汽车从A开往1000公里外的B,已知汽车每公里耗油量为1升,A处有无穷多的油,其他任何地点都没有油,但该车可以在任何地点存放油以备中转,问从A到B最少需要多少油
答:题目可归结为求数列 an=500/(2n+1) n=0,1,2,3......的和Sn什么时候大于等于1000,解得n>6
当n=6时,S6=977.57
所以第一个中转点离起始位置距离为1000-977.57=22.43公里
所以第一次中转之前共耗油 22.43*(2*7+1)=336.50升
此后每次中转耗油500升
所以总耗油量为7*500+336.50=3836.50升
11. 掷杯问题
一种杯子,若在第N层被摔破,则在任何比N高的楼层均会破,若在第M层不破,则在任何比M低的楼层均会破,给你两个这样的杯子,让你在100层高的楼层中测试,要求用最少的测试次数找出恰巧会使杯子破碎的楼层。
答:题目可归结为求自然数列的和S什么时候大于等于100,解得n>13
第一个杯子可能的投掷楼层分别为:14,27,39,50,60,69,77,84,90,95,99,100
12. 推理游戏
教授选出两个从2到9的数,把它们的和告诉学生甲,把它们的积告诉学生乙,让他们轮流猜这两个数
甲说:“我猜不出”
乙说:“我猜不出”
甲说:“我猜到了”
乙说:“我也猜到了”
问这两个数是多少
答:3和4(可严格证明)
设两个数为n1,n2,n1>=n2,甲听到的数为n=n1+n2,乙听到的数为m=n1*n2
证明n1=3,n2=4是唯一解
证明:要证以上命题为真,不妨先证n=7
1)必要性:
i) n>5 是显然的,因为n<4不可能,n=4或者n=5甲都不可能回答不知道
ii) n>6 因为如果n=6的话,那么甲虽然不知道(不确定2+4还是3+3)但是无论是2,4还是3,3乙都不可能说不知道(m=8或者m=9的话乙说不知道是没有道理的)
iii) n<8 因为如果n>=8的话,就可以将n分解成 n=4+x 和 n=6+(x-2),那么m可以是4x也可以是6(x-2)而4x=6(x-2)的必要条件是x=6即n=10,那样n又可以分解成8+2,所以总之当 n>=8时,n至少可以分解成两种不同的合数之和,这样乙说不知道的时候,甲就没有理由马上说知道。
以上证明了必要性
2)充分性
当n=7时,n可以分解成2+5或3+4
显然2+5不符合题意,舍去,容易判断出3+4符合题意,m=12,证毕
于是得到n=7 m=12 n1=3 n2=4是唯一解。
一个住宅区内有100户人家,每户人家养一条狗,每天傍晚大家都在同一个地方遛狗。已知这些狗中有一部分病狗,由于某种原因,狗的主人无法判断自己的狗是否是病狗,却能够分辨其他的狗是否有病,现在,上级传来通知,要求住户处决这些病狗,并且不允许指认他人的狗是病狗(就是只能判断自己的),过了7天之后,所有的病狗都被处决了,问,一共有几只病狗?为什么?
答:7只(数学归纳法证明)
1)若只有1只病狗,因为病狗主人看不到有其他病狗,必然会知道自己的狗是病狗(前提是一定存在病狗),所以他会在第一天把病狗处决。
2)设有k只病狗的话,会在第k天被处决,那么,如果有k+1只,病狗的主人只会看到k只病狗,而第k天没有人处决病狗,病狗主人就会在第k+1天知道自己的狗是病狗,于是病狗在第k+1天被处决
3)由1)2)得,若有n只病狗,必然在第n天被处决
14. 监狱里有100个房间,每个房间内有一囚犯。一天,监狱长说,你们狱房外有一电灯,你们在放风时可以控制这个电灯(熄或亮)。每天只能有一个人出来放风,并且放风是随机的。如果在有限时间内,你们中的某人能对我说:“我敢保证,现在每个人都已经至少放过一次风了。”我就放了你们!问囚犯们要采取什么策略才能被监狱长放掉?如果采用了这种策略,大致多久他们可以被释放?
答:约定好一个人作为报告人(可以是第一个放风的人)
规则如下:
1、报告人放风的时候开灯并数开灯次数
2、其他人第一次遇到开着灯放风时,将灯关闭
3、当报告人第100次开灯的时候,去向监狱长报告,要求监狱长放人......
按照概率大约30年后(10000天)他们可以被释放