f(x;μ,σ)=12π−−√σe−(x−μ)22σ2f(x;μ,σ)=12πσe−(x−μ)22σ2
f(μ;μ,σ)=12π−−√σ,f(μ±σ;μ,σ)=12π−−√σe−12f(μ;μ,σ)=12πσ,f(μ±σ;μ,σ)=12πσe−12
f(μ+x;μ,σ)=f(μ−x;μ,σ)f(μ+x;μ,σ)=f(μ−x;μ,σ)
f′(x;μ,σ)=12π−−√σe−(x−μ)22σ2[−2(x−μ)2σ2]=−x−μσ2f(x;μ,σ)f′(x;μ,σ)=12πσe−(x−μ)22σ2[−2(x−μ)2σ2]=−x−μσ2f(x;μ,σ)
∂∂μf(x;μ,σ)=12π−−√σe−(x−μ)22σ2[−12σ2]2(μ−x)=f(x;μ,σ)x−μσ2∂∂μf(x;μ,σ)=12πσe−(x−μ)22σ2[−12σ2]2(μ−x)=f(x;μ,σ)x−μσ2
∂∂σf(x;μ,σ)=12π−−√⎧⎩⎨⎪⎪⎪⎪(−1σ2)e−(x−μ)22σ2+1σe−(x−μ)22σ2[−(x−μ)22](−2)1σ3⎫⎭⎬⎪⎪⎪⎪∂∂σf(x;μ,σ)=12π{(−1σ2)e−(x−μ)22σ2+1σe−(x−μ)22σ2[−(x−μ)22](−2)1σ3}
=f(x;μ,σ)[−1σ+(x−μ)2σ3]=f(x;μ,σ)[−1σ+(x−μ)2σ3]
=f(x;μ,σ)1σ3[(x−μ)2−σ2]=f(x;μ,σ)1σ3[(x−μ)2−σ2]
ϕ(x)=12π−−√e−x22ϕ(x)=12πe−x22
f(x;μ,σ)=1σϕ(x−μσ)f(x;μ,σ)=1σϕ(x−μσ)
ϕ′(x)=−xϕ(x)ϕ′(x)=−xϕ(x)
f′′(x;μ,σ)=−1σ2[f(x;μ,σ)+(x−μ)f′(x;μ,σ)]f″(x;μ,σ)=−1σ2[f(x;μ,σ)+(x−μ)f′(x;μ,σ)]
=−1σ2[f(x;μ,σ)−(x−μ)x−μσ2f(x;μ,σ)]=−1σ2[f(x;μ,σ)−(x−μ)x−μσ2f(x;μ,σ)]
=1σ2f(x;μ,σ)[(x−μ)2σ2−1]=1σ2f(x;μ,σ)[(x−μ)2σ2−1]
=1σ4f(x;μ,σ)[(x−μ)2−σ2]=1σ4f(x;μ,σ)[(x−μ)2−σ2]
ϕ′′(x)=ϕ(x)(x2−1)ϕ″(x)=ϕ(x)(x2−1)
Φ(x)=∫x−∞ϕ(t)dtΦ(x)=∫−∞xϕ(t)dt
∫baf(x;μ,σ)dx=∫ba1σϕ(x−μσ)dx∫abf(x;μ,σ)dx=∫ab1σϕ(x−μσ)dx
=∫baϕ(x−μσ)dx−μσ=Φ(b−μσ)−Φ(a−μσ)=∫abϕ(x−μσ)dx−μσ=Φ(b−μσ)−Φ(a−μσ)
F(x;μ,σ)=∫x−∞f(t;μ,σ)dt=Φ(x−μσ)F(x;μ,σ)=∫−∞xf(t;μ,σ)dt=Φ(x−μσ)
[Φ(+∞)]2=⎡⎣⎢∫+∞−∞12π−−√e−x22dx⎤⎦⎥2[Φ(+∞)]2=[∫−∞+∞12πe−x22dx]2
=∫+∞−∞∫+∞−∞12πe−x2+y22dxdy=∫−∞+∞∫−∞+∞12πe−x2+y22dxdy
=∫2π0dθ∫+∞012πe−r22rdr=1=∫02πdθ∫0+∞12πe−r22rdr=1
⇒Φ(+∞)=1⇒Φ(+∞)=1
Φ(−∞)=lima→−∞Φ(a)=Φ(0)−lima→−∞∫0aϕ(x)dx=Φ(0)−Φ(0)=0Φ(−∞)=lima→−∞Φ(a)=Φ(0)−lima→−∞∫a0ϕ(x)dx=Φ(0)−Φ(0)=0
Φ(−x)=∫−x−∞ϕ(t)dtΦ(−x)=∫−∞−xϕ(t)dt
=−∫x+∞ϕ(−t)dt=−∫+∞xϕ(−t)dt
=∫+∞xϕ(t)dt=∫x+∞ϕ(t)dt
=1−Φ(x)=1−Φ(x)
⇒Φ(x)+Φ(−x)=1⇒Φ(x)+Φ(−x)=1
Φ(0)=12Φ(0)=12
E(X)=∫+∞−∞xf(x;μ,σ)dx=∫+∞−∞(x−μ)f(x;μ,σ)dx+μ=μE(X)=∫−∞+∞xf(x;μ,σ)dx=∫−∞+∞(x−μ)f(x;μ,σ)dx+μ=μ
Var(X)=E(X−EX)2Var(X)=E(X−EX)2
=∫+∞−∞(x−μ)2f(x;μ,σ)dx=∫−∞+∞(x−μ)2f(x;μ,σ)dx
=∫+∞−∞(x−μ)21σϕ(x−μσ)dx=∫−∞+∞(x−μ)21σϕ(x−μσ)dx
=σ2∫+∞−∞x2ϕ(x)dx=σ2∫−∞+∞x2ϕ(x)dx
=σ2=σ2
其中 ∫+∞−∞x2ϕ(x)dx=∫+∞−∞x212π−−√e−x22dx∫−∞+∞x2ϕ(x)dx=∫−∞+∞x212πe−x22dx
=−12π−−√⎡⎣⎢xe−x22∣∣∣+∞−∞−∫+∞−∞e−x22dx⎤⎦⎥=1=−12π[xe−x22|−∞+∞−∫−∞+∞e−x22dx]=1
∀0≤a≤1,⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪1−Φ(za)=a,1−Φ(z1−a)=1−a,Φ(za)=1−a,Φ(z1−a)=a,Φ(−za)=a,Φ(−z1−a)=1−a,∀0≤a≤1,{1−Φ(za)=a,1−Φ(z1−a)=1−a,Φ(za)=1−a,Φ(z1−a)=a,Φ(−za)=a,Φ(−z1−a)=1−a,
z1−a=−za,0≤a≤1z1−a=−za,0≤a≤1
z12=0z12=0
z0=+∞z0=+∞
z1=−∞z1=−∞
z1−a=−za,0≤a≤1z1−a=−za,0≤a≤1