Linear Block Code的簡單說明

在这里插入图片描述
在这里插入图片描述

### MobileNetV3 Block Architecture and Implementation In deep learning, particularly within convolutional neural networks (CNNs), architectures like MobileNetV3 are designed to be efficient while maintaining high performance on mobile devices. The block structure of MobileNetV3 incorporates several innovative components that enhance efficiency and accuracy. #### Key Components of a MobileNetV3 Block A typical MobileNetV3 block consists of three main layers: 1. **Squeeze-and-Excitation Layer** This layer adjusts the feature maps by recalibrating channel-wise feature responses through global context information[^1]. It helps improve model generalization without adding many parameters or computational cost. 2. **Depthwise Separable Convolutions** Instead of standard convolutions which require significant computation resources, depthwise separable convolutions split into two separate operations: depthwise convolution followed by pointwise convolution. Depthwise convolution applies a single filter per input channel, reducing complexity significantly compared with traditional filters. 3. **Non-linearity Function Selection** MobileNetV3 introduces an optimized activation function called Hard-Swish, defined as \( f(x) = \frac{x\cdotReLU6(x+3)}{6} \). For certain conditions where ReLU might not perform optimally due to dead neurons problem, this new non-linear unit can provide better results especially under resource constraints found in edge computing environments. Below demonstrates how these elements come together in code using TensorFlow/Keras framework: ```python import tensorflow as tf from tensorflow.keras import layers def se_block(input_tensor, ratio=4): """Create Squeeze-and-Excite block.""" num_channels = int(input_tensor.shape[-1]) x = layers.GlobalAveragePooling2D()(input_tensor) x = layers.Dense(num_channels // ratio)(x) x = layers.Activation('relu')(x) x = layers.Dense(num_channels, activation='sigmoid')(x) return layers.Multiply()([input_tensor, x]) def mobilenet_v3_block(inputs, expansion_size, output_filters, kernel_size=(3, 3)): """Build one MBConv block used inside MobileNet V3""" prefix = 'expanded_conv_' # Expansion phase expanded = layers.Conv2D(expansion_size, kernel_size=(1, 1), padding="same", use_bias=False)(inputs) bn1 = layers.BatchNormalization()(expanded) act1 = tf.nn.hard_swish(bn1) # Depthwise Convolution Phase dwconv = layers.DepthwiseConv2D(kernel_size=kernel_size, strides=(1, 1), padding="same", use_bias=False)(act1) bn2 = layers.BatchNormalization()(dwconv) act2 = tf.nn.relu6(bn2) # SE Block se_out = se_block(act2) # Pointwise Linear Bottleneck pw_linear = layers.Conv2D(output_filters, kernel_size=(1, 1), padding="same", use_bias=False)(se_out) out = layers.Add()([pw_linear, inputs]) if inputs.shape[-1] == output_filters else pw_linear return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值