TensorFlow 1.x 版本保存模型的三种方式的优缺点

在 TensorFlow 1.x 版本中,有三种常用的模型保存方式:Checkpoints,tf.saved_model(SavedModel 格式),以及 Freeze Graph。以下是每种方式的简要说明、优缺点。

  1. Checkpoints

Checkpoints 是 TensorFlow 中比较早期的模型保存方式。它通过 tf.train.Saver() 实例保存和恢复模型的参数(权重和偏置)。

优点

  • 简单易用,只需创建 tf.train.Saver() 实例并调用 save 和 restore 方法。
  • 保存空间相对较小,只保存参数值。

缺点

  • 只保存模型的参数值(variables),不保存计算图结构,因此在恢复时,需要先重新定义模型结构。
  • 依赖于原始的 Python 代码来重新构建计算图。
  • 不方便跨语言或平台部署,因为缺乏计算图的描述。
  1. tf.saved_model(SavedModel 格式)

SavedModel 格式是 TensorFlow 更推荐的模型保存格式。它是一个包含完整的 TensorFlow 程序的目录,包括权重和图结构。

优点

  • 完整保存富集成的模型,包括计算图和参数值。
  • 可跨平台部署,适合在 TensorFlow Serving、TensorFlow Lite、TensorFlow.js 或 TensorFlow Hub 上使用。
  • 支持模型的版本管理。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值