36、小波变换:从基础到高级特性

小波变换:从基础到高级特性

1. 正交小波基与紧框架

在小波变换的研究中,为双通道滤波器组设计的滤波器在区域 $[–0.5\pi, 0.5\pi]$ 内无零点。Cohen 证明了更强的结果,他推导了有限长单位模(FIR paraunitary)滤波器组生成正交小波基的充要条件。其分析结果之一是,定理 6.13 中的第四个条件可被更宽松的条件替代,即 $G_s(e^{j\omega})$ 在 $[–\pi/3, \pi/3]$ 内不为零。在实际应用中,获得正交小波基的条件很容易满足。当第四个条件不成立时,主要具有理论研究价值,Lawton 的紧框架定理在此背景下是一个有吸引力的结果。

1.1 小波紧框架

当定理 6.13 的第四个条件被违反时,由单位模滤波器组生成的小波函数 ${2^{k/2} \psi(2^{k} t - n)}$ 可能无法构成正交基,但这些函数总能为 $L^2$ 空间形成一个紧框架。因此,任何 $L^2$ 函数都可以表示为 ${2^{k/2} \psi(2^{k} t - n)}$ 函数的无限线性组合。

定理 6.14 :设 $G_s(e^{j\omega}) = \sum_{n=0}^{N} g_s(n)e^{-j\omega n}$ 是一个满足以下性质的滤波器:
1. $G_s(e^{j0}) = 1$
2. $\vert G_s(e^{j\omega})\vert^2 + \vert G_s(-e^{j\omega})\vert^2 = 1$(功率对称性)

则 $\varphi (t) \in L^2$。按式 (6.93) 定义小波函数 $\psi(t)$

【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器状态空间平均模型的建模策略。该方法通过对系统中多个相互耦合的DC-DC变换器进行统一建模,构建出整个微电网的集中状态空间模型,并在此基础上实施线性化处理,便于后续的小信号分析与稳定性研究。文中详细阐述了建模过程中的关键步骤,包括电路拓扑分析、状态变量选取、平均化处理以及雅可比矩阵的推导,最终通过Matlab代码实现模型仿真验证,展示了该方法在动态响应分析和控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink仿真工具,从事微电网、新能源系统建模与控制研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网中多变换器系统的统一建模方法;②理解状态空间平均法在非线性电力电子系统中的应用;③实现系统线性化并用于稳定性分析与控制器设计;④通过Matlab代码复现和扩展模型,服务于科研仿真与教学实践。; 阅读建议:建议读者结合Matlab代码逐步理解建模流程,重点关注状态变量的选择与平均化处理的数学推导,同时可尝试修改系统参数或拓扑结构以加深对模型通用性和适应性的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值