python_1 matplotlib 例子

本文介绍了使用Python的Matplotlib库进行数据可视化的方法。通过一个简单的正弦波和二次方程的例子展示了如何创建数据,设置全局字体大小,绘制模型曲线与散点图,并将图表保存为图片文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


# coding=UTF-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

# 通过rcParams设置全局横纵轴字体大小
mpl.rcParams['xtick.labelsize'] = 24
mpl.rcParams['ytick.labelsize'] = 24

np.random.seed(42)

# x轴的采样点
x = np.linspace(0, 5, 100)

# 通过下面曲线加上噪声生成数据,所以拟合模型就用y了……
y = 2*np.sin(x) + 0.3*x**2
y_data = y + np.random.normal(scale=0.3, size=100)

# figure()指定图表名称
plt.figure('data')

# '.'标明画散点图,每个散点的形状是个圆
plt.plot(x, y_data, '.')

# 画模型的图,plot函数默认画连线图
plt.figure('model')
plt.plot(x, y)

# 两个图画一起
plt.figure('data & model')

# 通过'k'指定线的颜色,lw指定线的宽度
# 第三个参数除了颜色也可以指定线形,比如'r--'表示红色虚线
# 更多属性可以参考官网:http://matplotlib.org/api/pyplot_api.html
plt.plot(x, y, 'k', lw=3)

# scatter可以更容易地生成散点图
plt.scatter(x, y_data)

# 将当前figure的图保存到文件result.png
plt.savefig('result.png')

# 一定要加上这句才能让画好的图显示在屏幕上
plt.show()



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值