import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(0,10,1000)
y=np.sin(x)
z=cos(x^2)
plt.figure(figsize=(8,4))
plt.plot(x,y,label='$sin(x)$',color='red',linewidth=3)
plt.plot(x,z,'g--',label='$cos(x^2)$',lw=3)
plt.xlabel('Time(s)')
plt.ylabel('volt')
plt.title('First python firgure')
plt.ylim(-1.2,1.2)
plt.legend()
plt.show()
我们调用numpy的方法sin() 和 cos()
用linspace()得到1000个点。
linspace (起点,终点,元素个数)
<span style="font-size:14px;">plt.plot(x,y,label='$sin(x)$',color='red',linewidth=3)</span>
plot() 传入点,标签 和颜色
plt.xlabel('Time(s)')
plt.ylabel('volt')
传入xy轴标签
plt.title('First python firgure')
plt.ylim(-1.2,1.2)
设置图片标题,和y轴范围。
我们得到这样的图
画散点图是我们使用scatter()
#-*-coding:utf-8-*
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = np.zeros((numberOfLines,2))
classLabelVector = []
index =0
for line in arrayOLines:
line = line.strip()
listFormLine = line.split(' ')
returnMat[index,:] = listFormLine[0:2]
classLabelVector.append(int(listFormLine[-1]))
index += 1
return returnMat, classLabelVector
matrix, labels = file2matrix('Train.txt')
print matrix
print labels
plt.figure(figsize=(8, 5), dpi=80)
axes = plt.subplot(111)
type1_x = []
type1_y = []
type2_x = []
type2_y = []
print 'range(len(labels)):'
print range(len(labels))
for i in range(len(labels)):
if labels[i] == 0:
type1_x.append(matrix[i][0])
type1_y.append(matrix[i][1])
if labels[i] == 1:
type2_x.append(matrix[i][0])
type2_y.append(matrix[i][1])
#print i, ':', labels[i], ':', type(labels[i])
type1 = axes.scatter(type1_x, type1_y,s=40, c='red' )
type2 = axes.scatter(type2_x, type2_y, s=40, c='green')
W1 = 1.23924482
W2 = 1.59913719
B = -6.67130613
x = np.linspace(-4,10,200)
y = (-W1/W2)*x+(-B/W2)
axes.plot(x,y,'b',lw=3)
#plt.scatter(matrix[:, 0], matrix[:, 1], s=20 * numpy.array(labels),
# c=50 * numpy.array(labels), marker='o',
# label='test')
plt.xlabel('x1')
plt.ylabel('x2')
axes.legend((type1, type2), ('0', '1'),loc=1)
plt.show()
我们从Train.txt得到数据。我们得到了这样的图